Презентация, доклад по геометрии для 10 класса на тему: Усеченная пирамида

Презентация по геометрии для 10 класса на тему: Усеченная пирамида, предмет презентации: Геометрия. Этот материал в формате pptx (PowerPoint) содержит 18 слайдов, для просмотра воспользуйтесь проигрывателем. Презентацию на заданную тему можно скачать внизу страницы, поделившись ссылкой в социальных сетях!

Слайды и текст этой презентации

Слайд 1
Текст слайда:

УСЕЧЁННАЯ ПИРАМИДА

КЛАСС

СТЕРЕОМЕТРИЯ


Слайд 2
Текст слайда:

ПОНЯТИЕ ПОНЯТИЕ УСЕЧЕННОЙ ПИРАМИДЫ
ПРАВИЛЬНАЯ УСЕЧЁННАЯ ПИРАМИДА
ПЛОЩАДЬ ПОВЕРХНОСТИ ПЛОЩАДЬ ПОВЕРХНОСТИ УСЕЧЁННОЙ ПИРАМИДЫ
ЗАДАЧИ



СОДЕРЖАНИЕ


Слайд 3
Текст слайда:

ПОНЯТИЕ УСЕЧЕННОЙ ПИРАМИДЫ

Плоскость параллельная основанию пирамиды, разбивает её на два многогранника. Один из них является пирамидой, а другой называется усечённой пирамидой.
Усеченная пирамида – это часть полной пирамиды, заключенная между её основанием и секущей плоскостью, параллельной основанию данной пирамиды

СОДЕРЖАНИЕ



Слайд 4
Текст слайда:

СОДЕРЖАНИЕ

ПОНЯТИЕ УСЕЧЕННОЙ ПИРАМИДЫ

ОСНОВАНИЯ

С

Н

Многоугольники А1А2А3А4А5 и В1В2В3В4В5 - нижнее и верхнее основания усечённой пирамиды
Отрезки А1В1, А2В2, А3В3… - боковые ребра усечённой пирамиды
Четырёхугольники А1В1В2А2, А2В2В3А3 … - боковые грани усечённой пирамиды. Можно доказать, что все они являются трапециями.
Отрезок СН – перпендикуляр, проведённый из какой-нибудь точки верхнего основания к нижнему основанию – называется высотой усечённой пирамиды.



Слайд 5
Текст слайда:

ПИРАМИДА

УСЕЧЕННАЯ ПИРАМИДА



α

β

Р

Докажем, что боковые грани А1А2А3А4А5В1В2В3В4В5 являются трапециями.
Рассмотрим четырехугольник А1В1В2А2.
1. α || β
(РА2А3) ∩ α=А2А3 значит А2А3|| В2В3
(РА2А3) ∩ β=В2В3
2. А2Р ∩ А3Р=Р, значит А2В2 || А3В3
Т.о. А1В1В2А2 – трапеция по определению
Аналогично доказывается и про остальные боковые грани.



СОДЕРЖАНИЕ



Слайд 6
Текст слайда:

ПИРАМИДА

СОДЕРЖАНИЕ

ПОНЯТИЕ УСЕЧЕННОЙ ПИРАМИДЫ

ОСНОВАНИЯ

С

Н

Многоугольники А1А2А3А4А5 и В1В2В3В4В5 - нижнее и верхнее основания усечённой пирамиды
Отрезки А1В1, А2В2, А3В3… - боковые ребра усечённой пирамиды
Четырёхугольники А1В1В2А2, А2В2В3А3 … - боковые грани усечённой пирамиды. Можно доказать, что все они являются трапециями.
Отрезок СН – перпендикуляр, проведённый из какой-нибудь точки верхнего основания к нижнему основанию – называется высотой усечённой пирамиды



Слайд 7
Текст слайда:

ПРАВИЛЬНАЯ УСЕЧЕННАЯ ПИРАМИДА

СОДЕРЖАНИЕ

Усеченная пирамида называется правильной, если она получена сечением правильной пирамиды плоскостью, параллельной основанию.
Основания - правильные многоугольники .
Боковые грани – равные равнобедренные трапеции (?).
Высоты этих трапеций называются апофемами.



Слайд 8
Текст слайда:

СОДЕРЖАНИЕ


ПРАВИЛЬНАЯ ПИРАМИДА


Пирамида называется правильной, если её основание – правильный многоугольник, если её основание – правильный многоугольник, а отрезок , соединяющий вершину с центром основания, является её высотой.
Все боковые рёбра правильной пирамиды равны, а грани являются равными равнобедренными треугольниками.
Высота боковой грани правильной пирамиды называется апофемой. Все апофемы правильной пирамиды равны друг другу.



Слайд 9
Текст слайда:

ПИРАМИДА

Правильным многоугольником называется многоугольник, у которого все стороны равны и все углы равны.






Центр окружности, описанной около правильного многоугольника совпадает с центром окружности, вписанной в тот же многоугольник, и называется центром правильного многоугольника. Для его нахождения достаточно определить в какой точке находится центр либо вписанной либо описанной окружности.



Слайд 10
Текст слайда:

СОДЕРЖАНИЕ

УСЕЧЕННЫЕ ПИРАМИДЫ



Слайд 11
Текст слайда:

СОДЕРЖАНИЕ


Площадью полной поверхности (Sполн) пирамиды называется сумма площадей всех её граней: основания и всех боковых граней.
Площадью боковой поверхности (Sбок) пирамиды называется сумма площадей её боковых граней.
Sполн =Sбок+Sосн
Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.
Площадь боковой поверхности правильной усечённой пирамиды равна произведению полусуммы периметров оснований на апофему. Доказать.

ПЛОЩАДЬ ПОВЕРХНОСТИ УСЕЧЁННОЙ ПИРАМИДЫ


Sполн.усеч.=Sбок+Sверхн.осн.+Sнижн.осн.


Слайд 12
Текст слайда:

ПЛОЩАДЬ ПОВЕРХНОСТИ УСЕЧЁННОЙ ПИРАМИДЫ

СОДЕРЖАНИЕ


Найдем площадь одной из граней правильной n-угольной усечённой пирамиды.

α2

α1


h

Т.к. эта усечённая пирамида правильная, то



Слайд 13
Текст слайда:

ЗАДАЧА 1

Найдите: 1. апофему пирамиды;
2. площадь полной поверхности.


СОДЕРЖАНИЕ

Стороны оснований правильной треугольной усеченной пирамиды равны 4 см и 2 см, а боковое ребро равно 2 см.


Слайд 14
Текст слайда:

Ход решения задачи.

Дано: ABCMPK – правильная усечённая пирамида;
∆АВС – нижнее основание;
∆МРК – верхнее основание;
АВ = 4 см, МР = 2 см, АМ = 2 см.
Найти: 1. апофему;
2. Sполн.

План решения:
Сделать чертеж.
Построить апофему и определить многоугольник, из которого можно её найти.
Произвести необходимые вычисления.

СОДЕРЖАНИЕ


2

2

4



Слайд 15
Текст слайда:

РЕШЕНИЕ

А

В


М

Р


2

2

Н

С


2

СОДЕРЖАНИЕ

АВ=АН+АС+СВ
СВ=АН АВ=2АН+МР
НС=МР
Т.о. 2АН=2, АН=1
∆АМН – прямоугольный, ∠АНМ=90°
АН= по теореме Пифагора.



4


Sполн=Sбок+Sверхн.осн.+Sнижн.осн.


т.к. в основании правильные треугольники


Слайд 16
Текст слайда:

РЕШЕНИЕ


Ответ:

СОДЕРЖАНИЕ



Слайд 17
Текст слайда:

ЗАДАЧА 2

Плоскость, параллельная плоскости основания правильной четырехугольной пирамиды, делит высоту пирамиды в отношении 1:2, считая от вершины пирамиды. Апофема полученной усеченной пирамиды равна 4 см, а площадь её полной поверхности равна 186 см2.

Найдите высоту усечённой пирамиды.


СОДЕРЖАНИЕ


Слайд 18
Текст слайда:

СПАСИБО ЗА ТЕРПЕНИЕ


Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть