Доказательство:
1)Введём следующие обозначения: √(a*b) = x; √a = y; √b = z. Надо доказать, что для неотрицательных чисел x, y, z выполняется равенство x = y*z, т.е. x = y*z = √(a*b) = √a*√b.
2) Так как √(a*b) = x, то x2 = a*b. Аналогично, так как y = √a и z = √b, то соответственно y2 = a и z2 = b.
3) Итак, x2 = a*b, y2 = a и z2 = b. Тогда x2 = y2 * z2, т.е. x2 = (у*z)2. Если квадраты двух неотрицательных чисел равны, то и сами числа равны, значит, из равенства x2 = (у*z)2 следует, что x = y*z, что и требовалось доказать.
Краткая запись доказательства теоремы:
Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.
Email: Нажмите что бы посмотреть