Презентация, доклад по математике Сечение тетраэдра

Содержание

Для решения многих геометрических задач необходимо строить их сечения различными плоскостями.

Слайд 1Построение сечений тетраэдра и параллелепипеда
Вабищевич С.Н
НСВУ МВД России
Новочеркасск 2018год.

Построение сечений тетраэдра и параллелепипедаВабищевич С.ННСВУ МВД РоссииНовочеркасск 2018год.

Слайд 2Для решения многих геометрических задач необходимо строить их сечения различными плоскостями.

Для решения многих геометрических задач необходимо строить их сечения различными плоскостями.

Слайд 3Секущей плоскостью параллелепипеда (тетраэдра) называется любая плоскость, по обе стороны от

которой имеются точки данного параллелепипеда (тетраэдра).


Секущей плоскостью параллелепипеда (тетраэдра) называется любая плоскость, по обе стороны от которой имеются точки данного параллелепипеда (тетраэдра).

Слайд 4Секущая плоскость пересекает грани тетраэдра (параллелепипеда) по отрезкам.
Многоугольник, сторонами которого являются

данные отрезки, называется сечением тетраэдра (параллелепипеда).


Секущая плоскость пересекает грани тетраэдра (параллелепипеда) по отрезкам.Многоугольник, сторонами которого являются данные отрезки, называется сечением тетраэдра (параллелепипеда).

Слайд 5При этом необходимо учитывать следующее:
1. Соединять можно только две точки, лежащие
в

плоскости одной грани.

Для построения сечения нужно построить точки пересечения секущей плоскости с ребрами и соединить их отрезками.

2. Секущая плоскость пересекает параллельные грани по параллельным отрезкам.

3. Если в плоскости грани отмечена только одна точка, принадлежащая плоскости сечения, то надо построить дополнительную точку. Для этого необходимо найти точки пересечения уже построенных прямых с другими прямыми, лежащими в тех же гранях.



При этом необходимо учитывать следующее:1. Соединять можно только две точки, лежащиев плоскости одной грани.Для построения сечения нужно

Слайд 6
Какие многоугольники могут получиться в сечении ?
Тетраэдр имеет 4 грани
В сечениях

могут получиться:


Четырехугольники

Треугольники


Какие многоугольники могут получиться в сечении ?Тетраэдр имеет 4 граниВ сечениях могут получиться:ЧетырехугольникиТреугольники

Слайд 7Треугольники

Параллелепипед имеет 6 граней
Четырехугольники

Шестиугольники
Пятиугольники

В его сечениях
могут получиться:

ТреугольникиПараллелепипед имеет 6 гранейЧетырехугольники  ШестиугольникиПятиугольникиВ его сечениях могут получиться:

Слайд 8Построить сечение тетраэдра DABC плоскостью, проходящей через точки M,N,K

Проведем прямую через


точки М и К, т.к. они лежат
в одной грани (АDC).


2. Проведем прямую через точки К и N, т.к. они лежат в одной грани (СDB).

3. Аналогично рассуждая, проводим прямую MN.

4. Треугольник MNK –
искомое сечение.


Построить сечение тетраэдра DABC плоскостью, проходящей через точки M,N,KПроведем прямую через точки М и К, т.к. они

Слайд 9Построить сечение тетраэдра плоскостью,
проходящей через точки E, F, K.





E
F
K
L
A
B
C
D
M
1. Проводим

КF.

2. Проводим FE.

3. Продолжим EF, продол- жим AC.


5. Проводим MK.

7. Проводим EL

EFKL – искомое
сечение

Правила


Построить сечение тетраэдра плоскостью, проходящей через точки E, F, K.EFKLABCDM1. Проводим КF.2. Проводим FE.3. Продолжим EF, продол-

Слайд 10Построить сечение тетраэдра плоскостью,
проходящей через точки E, F, K.





E
F
K
L
A
B
C
M
D
Правила
Второй способ

Построить сечение тетраэдра плоскостью, проходящей через точки E, F, K.EFKLABCMDПравилаВторой способ

Слайд 11E
F
L
A
B
C
D
О


Построить сечение тетраэдра плоскостью,
проходящей через точки E, F, K.
K



Первый способ

Правила

EFLABCDОПостроить сечение тетраэдра плоскостью, проходящей через точки E, F, K.KПервый способПравила

Слайд 12Вывод: независимо от способа построения сечения одинаковые.
Способ №1.
Способ №2.

Вывод: независимо от способа построения сечения одинаковые.Способ №1.Способ №2.

Слайд 13A1
А
В
В1
С
С1
D
D1

Построить сечение параллелепипеда плоскостью,
проходящей через точки M,A,D.



М
1. AD
2. MD
3. ME//AD,

т.к. (ABC)//(A1B1C1)

4. AE

5. AEMD – сечение.

E


A1АВВ1СС1DD1Построить сечение параллелепипеда плоскостью, проходящей через точки M,A,D.М1. AD2. MD3. ME//AD, т.к. (ABC)//(A1B1C1)4. AE5. AEMD – сечение.E

Слайд 14A1
А
В
В1
С
С1
D
D1
M
N




Построить сечения параллелепипеда плоскостью, проходящей через точки В1, М, N






O
К
Е
P
Правила

1.

MN

2.Продолжим MN,ВА

4. В1О

6. КМ

7. Продолжим MN и BD.

9. В1E

5. В1О ∩ А1А=К

8. MN ∩ BD=E

10. B1Е ∩ D1D=P , PN

3.MN ∩ BA=O


A1АВВ1СС1DD1MNПостроить сечения параллелепипеда плоскостью, проходящей через точки В1, М, N OКЕPПравила1. MN2.Продолжим MN,ВА 4. В1О6. КМ 7.

Слайд 15ВЫ МНОГОЕ УЗНАЛИ
И МНОГОЕ УВИДЕЛИ!
ТАК ВПЕРЕД, РЕБЯТА:
ДЕРЗАЙТЕ И ТВОРИТЕ!
СПАСИБО ЗА ВНИМАНИЕ.

ВЫ МНОГОЕ УЗНАЛИИ МНОГОЕ УВИДЕЛИ!ТАК ВПЕРЕД, РЕБЯТА:ДЕРЗАЙТЕ И ТВОРИТЕ!СПАСИБО ЗА ВНИМАНИЕ.

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть