Презентация, доклад по математике на тему Вписанная окружность

Цели урока:1.Познакомится с определением вписанной окружности. 2.Изучить доказательство теоремы о вписанной окружности.3.Решение задач по данной теме.

Слайд 120. 04. Классная работа
Вписанная окружность.

20. 04.  Классная работаВписанная окружность.

Слайд 2Цели урока:
1.Познакомится с определением вписанной окружности.
2.Изучить доказательство теоремы о вписанной

окружности.
3.Решение задач по данной теме.




Цели урока:1.Познакомится с определением вписанной окружности. 2.Изучить доказательство теоремы о вписанной окружности.3.Решение задач по данной теме.

Слайд 3Устная работа
O
M
K
N
Д а н о:
MO = √ 3
МК =

3
Н а й т и:
∠ МКN-?
MN-?

√3

O

B

C

A

Д а н о:
∠ OAC=20º
∠ АOC=120º
Н а й т и:
Углы ∆ АBC

3

Устная работаOMKNД а н о: MO = √ 3 МК = 3Н а й т и:

Слайд 4Так четырехугольник EFNM описан около окружности,
а четырехугольник NMКD не является
описанным

около этой окружности.

Если все стороны многоугольника касаются окружности ,
то окружность называется
в п и с а н н о й
в многоугольник ,

а многоугольник –
о п и с а н н ы м
около этой окружности.

E

F

D

K

M

N

Так четырехугольник EFNM описан около окружности,а четырехугольник NMКD не является описанным около этой окружности. Если все стороны

Слайд 5 В любой треугольник можно вписать окружность.
Т е о р

е м а
В любой треугольник можно вписать окружность.Т е о р е м а

Слайд 6Д а н о:
∆ ABC

Д о к а з а т

е л ь с т в о:
в треугольнике ABC, О – точка серединных перпендикуляров.

OK ┴ AС, OL ┴ BC, OM ┴ AB

Стороны ∆ ABC касаются окружности в точках.
Значит , окружность с центром О радиуса ОК является вписанной в треугольник АВС.

Что и требовалось доказать

А

В

С

О

К


L

M

OK = OL = OM, значит через точки K,M,L проходит окружность


Д а н о:∆ ABCД о к а з а т е л ь с т в

Слайд 7№ 701.

№ 701.

Слайд 8Домашняя работа :

1. Что называется вписанной окружностью?
2. Что является центром вписанной

окружности?
3. В любой ли треугольник можно вписать окружность?

Вопросы для повторения:

Пункт 74 (теорема) № 690 , №691

Домашняя работа :1. Что называется вписанной окружностью?2. Что является центром вписанной окружности?3. В любой ли треугольник можно

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть