Презентация, доклад по математике на тему Векторы

Содержание

Цель:Воспользовавшись различной литературой, различными справочными материалами для более подробного изучения темы «Векторы», дать более полное представление по данной теме.

Слайд 1Тема реферата:
«Векторы»

Тема реферата:«Векторы»

Слайд 2Цель:
Воспользовавшись различной литературой, различными справочными материалами для более подробного изучения темы

«Векторы», дать более полное представление по данной теме.
Цель:Воспользовавшись различной литературой, различными справочными материалами для более подробного изучения темы «Векторы», дать более полное представление по

Слайд 3Задачи:
Дать понятия вектора;
Рассмотреть операции над векторами;
Рассмотреть применение векторов при доказательстве теорем

и решении задач.
Задачи:Дать понятия вектора;Рассмотреть операции над векторами;Рассмотреть применение векторов при доказательстве теорем и решении задач.

Слайд 4Понятие вектора:
В традиционных математических курсах вектор определяется как направленный отрезок.

Понятие вектора:В традиционных математических курсах вектор определяется как направленный отрезок.

Слайд 5Коллинеарные вектора:
Ненулевые вектора называются коллинеарными, если они лежат либо на одной

прямой, либо на параллельных прямых.
Коллинеарные вектора:Ненулевые вектора называются коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых.

Слайд 6Сонаправленные вектора:
Два ненулевых коллинеарных вектора направленные в одну сторону называются сонаправленными

векторами.
Сонаправленные вектора:Два ненулевых коллинеарных вектора направленные в одну сторону называются сонаправленными векторами.

Слайд 7Противоположно направленные вектора:
Два ненулевых коллинеарных вектора направленные в противоположную

сторону называются противоположно направленными векторами.
Противоположно направленные вектора: Два ненулевых коллинеарных вектора направленные в противоположную сторону называются противоположно направленными векторами.

Слайд 8Равенство векторов:
Векторы называются равными, если они сонапрвленные и их длины равны.

Равенство векторов:Векторы называются равными, если они сонапрвленные и их длины равны.

Слайд 9Сумма векторов:
Отметим произвольную точку А и отложим от этой точки вектор

АВ . Затем от точки В отложим вектор ВС.
Вектор АС называется суммой векторов АВ и ВС.

Сумма векторов:Отметим произвольную точку А и отложим от этой точки вектор АВ    . Затем

Слайд 10Сумма нескольких векторов:

Сумма нескольких векторов:

Слайд 11Разность векторов:

Разность векторов:

Слайд 12Правило параллелограмма:

Правило параллелограмма:

Слайд 13Разложение вектора:

Разложение вектора:

Слайд 14Скалярное произведение векторов:
Скалярным произведением двух ненулевых векторов называется число, равное произведению числовых

значений длин этих векторов на косинус угла между векторами.
Скалярное произведение векторов:Скалярным произведением двух ненулевых векторов называется число, равное произведению числовых значений длин этих векторов на

Слайд 15Скалярное произведение ненулевых векторов равно нулю тогда и только тогда, когда

эти векторы перпендикулярны.
Скалярное произведение ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны.

Слайд 16Теоремы:
Средняя линия треугольника параллельна его третьей стороне и равна половине ее.


Теоремы:Средняя линия треугольника параллельна его третьей стороне и равна половине ее.

Слайд 17Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.

Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.

Слайд 18Диагонали ромба взаимно перпендикулярны

Диагонали ромба взаимно перпендикулярны

Слайд 19Диагонали прямоугольника равны между собой.

Диагонали прямоугольника равны между собой.

Слайд 20Введение в школьный курс геометрии векторного аппарата вооружает учащихся ещё одним

методом решения геометрических задач – векторным.
Введение в школьный курс геометрии векторного аппарата вооружает учащихся ещё одним методом решения геометрических задач – векторным.

Слайд 21Спасибо за внимание!!!

Спасибо за внимание!!!

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть