Презентация, доклад по геометрии на тему Теорема о серединном перпендикуляре (8 класс)

Устно: 1. Найти: MKОтвет: 3?

Слайд 1 Теорема о серединном перпендикуляре.

Теорема о серединном перпендикуляре.

Слайд 2Устно: 1. Найти: MK
Ответ: 3
?

Устно:  1. Найти: MKОтвет: 3?

Слайд 3 Устно: 2. Найти: SАВM.
Ответ: 35
?

Устно: 2. Найти: SАВM. Ответ: 35?

Слайд 4 Серединный перпендикуляр
Серединным перпендикуляром к отрезку называется прямая, проходящая через

середину данного отрезка и перпендикулярная к нему

аАВ и АО=ВО (О=аАВ)

Серединный перпендикуляр   Серединным перпендикуляром к отрезку называется прямая, проходящая через середину

Слайд 5Теорема:
Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.
Дано:

М - произвольная точка а,
а- серединный перпендикуляр к отрезку АВ.
Следовательно:
МА=МВ
Теорема:Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.Дано:  М - произвольная точка а,

Слайд 6Обратно: Каждая точка, равноудаленная от концов этого отрезка, лежит на серединном

перпендикуляре к нему.

Дано:
NА=NВ, прямая m – серединный перпендикуляр к отрезку АВ.
Следовательно:
N – лежит на прямой m.

Обратно: Каждая точка, равноудаленная от концов этого отрезка, лежит на серединном перпендикуляре к нему.Дано: NА=NВ, прямая m

Слайд 7Следствие:
Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.
Дано:
mAC, nBC,

AM=MC, CN=NB.
Следовательно: O= mn p.
Следствие:Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.Дано: mAC, nBC, AM=MC, CN=NB.Следовательно:  O= mn p.

Слайд 8Выполнение упражнений:
№679(б), №686(разобранная)

Выполнение упражнений:№679(б), №686(разобранная)

Слайд 9Подготовка к ОГЭ
1. Найдите пе­ри­метр прямоугольного участ­ка земли, пло­щадь которого равна

800 м2 и одна сто­ро­на в 2 раза боль­ше другой. Ответ дайте в метрах.

Определите, сколь­ко необходимо за­ку­пить пленки   для гид­ро­изо­ля­ции садовой дорожки, изоб­ра­жен­ной на рисунке, если её ши­ри­на везде одинакова.

2. Определите, сколь­ко необходимо за­ку­пить пленки (в метрах квадратных) для гид­ро­изо­ля­ции садовой дорожки, изоб­ра­жен­ной на рисунке, если её ши­ри­на везде одинакова.

Подготовка к ОГЭ1. Найдите пе­ри­метр прямоугольного участ­ка земли, пло­щадь которого равна 800 м2 и одна сто­ро­на в 2

Слайд 10Подготовка к ОГЭ
3.
Определите, сколь­ко необходимо за­ку­пить пленки   для гид­ро­изо­ля­ции садовой

дорожки, изоб­ра­жен­ной на рисунке, если её ши­ри­на везде одинакова.

Дизайнер Павел по­лу­чи­л заказ на де­ко­ри­ро­ва­ние че­мо­да­на цвет­ной бумагой. По ри­сун­ку определите, сколь­ко бу­ма­ги (в см2) не­об­хо­ди­мо за­ку­пить Павлу, чтобы окле­ить всю внеш­нюю по­верх­ность чемодана, если каж­дую грань он будет об­кле­и­вать от­дель­но (без загибов).

Подготовка к ОГЭ3. Определите, сколь­ко необходимо за­ку­пить пленки   для гид­ро­изо­ля­ции садовой дорожки, изоб­ра­жен­ной на рисунке, если её

Слайд 11Подготовка к ОГЭ
4. На карте по­ка­зан путь Лены от дома до

школы. Лена из­ме­ри­ла длину каж­до­го участка и под­пи­са­ла его. Ис­поль­зуя рисунок, определите, длину пути (в м), если мас­штаб 1 см: 10000 см.

5. Глубина бас­сей­на со­став­ля­ет 2 метра, ши­ри­на — 10 метров, а длина — 25 метров. Най­ди­те сум­мар­ную пло­щадь бо­ко­вых стен и дна бас­сей­на (в квад­рат­ных метрах).

Подготовка к ОГЭ4. На карте по­ка­зан путь Лены от дома до школы. Лена из­ме­ри­ла длину каж­до­го участка

Слайд 12Домашнее задание:
№679(а), №681,
учить теоремы

Домашнее задание:№679(а), №681, учить теоремы

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть