Презентация, доклад по геометрии 11 класс по теме Сфера и шар

Окружность и круг (Основные определения)Окружность – фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии r от данной точкиКруг – часть плоскости, ограниченная окружностью

Слайд 1Cфера
Подготовили: ученицы 11 «Б» класс
ГБОУ СОШ 548 Санкт-Петербурга
Кисиль Дарья и

Кочоян Ирина
Учитель математики: Шкромада Е.А.
2017 год
CфераПодготовили: ученицы 11 «Б» класс ГБОУ СОШ 548 Санкт-ПетербургаКисиль Дарья и Кочоян ИринаУчитель математики: Шкромада Е.А.2017 год

Слайд 2Окружность и круг (Основные определения)
Окружность – фигура, состоящая из всех точек плоскости,

расположенных на заданном расстоянии r от данной точки



Круг – часть плоскости, ограниченная окружностью
Окружность и круг (Основные определения)Окружность – фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии r

Слайд 3Сфера
Сфера – это поверхность, состоящая из всех точек пространства, расположенных на

данном расстоянии R от данной точки (центра тчк O)
Радиус сферы – отрезок, соединяющий любую точку сферы с центром
Диаметр сферы – отрезок, соединяющий две точки сферы и проходящий через её центр

СфераСфера – это поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии R от данной точки

Слайд 4Сфера может быть получена вращением полуокружности вокруг ее диаметра

Сфера может быть получена вращением  полуокружности вокруг ее диаметра

Слайд 5Шар
Шар – это тело, ограниченное сферой
Центр, радиус и диаметр сферы называются

также центром, радиусом и диаметром шара
ШарШар – это тело, ограниченное сферойЦентр, радиус и диаметр сферы называются также центром, радиусом и диаметром шара

Слайд 6Уравнение окружности

Уравнение окружности

Слайд 7Уравнение сферы

Уравнение сферы

Слайд 8Сечения сферы и шара

Сечения сферы и шара

Слайд 9Взаимное расположение сферы и плоскости
2 общие точки
1 общая точка
нет общих точек

Взаимное расположение сферы и плоскости2 общие точки1 общая точканет общих точек

Слайд 10Случай 1
D

r= √R2-d2
Сечение шара плоскостью есть круг.


Плоскость, проходящая через диаметр шара, называется диаметральной. Круг, полученный в результате сечения, называется большим кругом.

Случай 1D

Слайд 11Случай 2
d=R
R2-d2=0.
Cфера и плоскость имеют одну общую точку

Случай 2 d=RR2-d2=0.Cфера и плоскость имеют одну общую точку

Слайд 12Случай 3
d>R
R2-d2

Случай 3d>RR2-d2

Слайд 13Касательная плоскость к сфере
Плоскость, имеющая со сферой только одну общую точку

называется- касательной плоскостью. Их общая точка- точка касания.
Свойство:
Радиус сферы, проведенный в точку касания сферы и плоскости, перпендикулярен к касательной плоскости.
Обратное свойство:
Если радиус сферы перпендикулярен к плоскости, проходящий через его конец, лежащий на сфере, то плоскость- касательная плоскость.
Касательная плоскость к сфереПлоскость, имеющая со сферой только одну общую точку называется- касательной плоскостью. Их общая точка-

Слайд 14Площадь сферы и шара

Площадь сферы и шара

Слайд 17Спасибо за внимание

Спасибо за внимание

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть