Презентация, доклад по математике Подготовка к ЕГЭ. Решение задач по теории вероятностей.

Содержание

Справочный материалЭлементарные события (исходы) – простейшие события, которыми может окончится случайный опыт.Сумма вероятностей всех элементарных событий равна 1.Р(А) равна сумме вероятностей элементарных событий, благоприятствующих этому событию.(объединение) – событие, состоящее из элементарных исходов, благоприятствующих хотя бы одному

Слайд 1Подготовка к ЕГЭ
Решение задач по теории
вероятностей

Подготовка к ЕГЭРешение задач по теории вероятностей

Слайд 2Справочный материал
Элементарные события (исходы) – простейшие события, которыми может окончится случайный

опыт.

Сумма вероятностей всех элементарных событий равна 1.

Р(А) равна сумме вероятностей элементарных событий, благоприятствующих этому событию.

(объединение) – событие, состоящее из элементарных исходов, благоприятствующих хотя бы одному из событий А,В

(пересечение) – событие, состоящее из элементарных исходов, благоприятствующих обоим событиям А и В.

называется противоположным событию А, если состоит из тех и только тех элементарных исходов, которые не входят в А.

Несовместные события – это события, которые не наступают в одном опыте.

Справочный материалЭлементарные события (исходы) – простейшие события, которыми может окончится случайный опыт.Сумма вероятностей всех элементарных событий равна

Слайд 3Вероятности противоположных событий:
Формула сложения вероятностей:
Формула сложения для несовместных событий:
Формула умножения вероятностей:
Условная

вероятность В при условии, что А наступило

Формула вероятности k успехов в серии из n испытаний Бернулли:

р – вероятность успеха, q=1-p вероятность неудачи в одном испытании

Вероятности противоположных событий:Формула сложения вероятностей:Формула сложения для несовместных событий:Формула умножения вероятностей:Условная вероятность В при условии, что А

Слайд 4Задачи по теме:
« Определение вероятности»

Задачи по теме:« Определение вероятности»

Слайд 5Схема решения задач:
Определить, в чем состоит случайный эксперимент и какие у

него элементарные события. Убедиться, что они равновероятны.
Найти общее число элементарных событий (N)
Определить, какие элементарные события благоприятствуют событию А, и найти их число N(A).
Найти вероятность события А по формуле
Схема решения задач:Определить, в чем состоит случайный эксперимент и какие у него элементарные события. Убедиться, что они

Слайд 6Задача 1. Вася, Петя, Коля и Леша бросили жребий – кому

начинать игру. Найдите вероятность того, что игру будет начинать Петя.

Решение:

Случайный эксперимент – бросание жребия.
Элементарное событие – участник, который выиграл жребий.

Число элементарных событий: N=4

Событие А = {жребий выиграл Петя}, N(A)=1

Ответ: 0,25

Задача 1. Вася, Петя, Коля и Леша бросили жребий – кому начинать игру. Найдите вероятность того, что

Слайд 7Реши самостоятельно!
Дежурные по классу Алексей, Иван, Татьяна и Ольга бросают жребий

- кому стирать с доски. Найдите вероятность того, что стирать с доски достанется одной из девочек.

Алексей
Иван
Татьяна
Ольга

Ответ: 0,5

Реши самостоятельно!Дежурные по классу Алексей, Иван, Татьяна и Ольга бросают жребий - кому стирать с доски. Найдите

Слайд 8Задание 4 № 1001. На экзамен вынесено 60 вопросов, Андрей не выучил 3

из них. Найдите вероятность того, что ему попадется выученный вопрос.

Задание 4 № 1011. В фирме такси в данный момент свободно 20 машин: 10 черных, 2 желтых и 8 зеленых. По вызову выехала одна из машин, случайно оказавшаяся ближе всего к заказчице. Найдите вероятность того, что к ней приедет зеленое такси.
Задание 4 № 1001. На экзамен вынесено 60 вопросов, Андрей не выучил 3 из них. Найдите вероятность того, что

Слайд 9Задание 4 № 1024. На тарелке 16 пирожков: 7 с рыбой, 5 с

вареньем и 4 с вишней. Юля наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

Задание 4 № 282855. В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные — из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая.
Задание 4 № 1024. На тарелке 16 пирожков: 7 с рыбой, 5 с вареньем и 4 с вишней. Юля

Слайд 10Задание 4 № 282856. В среднем из 1000 садовых
насосов, поступивших в продажу,

5 подтекают.
Найдите вероятность того, что один случайно
выбранный для контроля насос не
подтекает.

Здание 4 № 282857. Фабрика выпускает сумки. В среднем на 100 качественных сумок приходится восемь сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых.

0,93

Задание 4 № 282856. В среднем из 1000 садовых насосов, поступивших в продажу, 5 подтекают. Найдите вероятность того, что

Слайд 11Задание 4 № 282858. В соревнованиях по толканию ядра участвуют 4 спортсмена из

Финляндии, 7 спортсменов из Дании, 9 спортсменов из Швеции и 5 — из Норвегии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, который выступает последним, окажется из Швеции.


Задание 4 № 283479.
В чемпионате по гимнастике участвуют 50 спортсменок: 24 из США, 13 из Мексики, остальные — из Канады. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Канады.

Задание 4 № 282858. В соревнованиях по толканию ядра участвуют 4 спортсмена из Финляндии, 7 спортсменов из Дании, 9

Слайд 12Реши самостоятельно!
Какова вероятность того, что случайно выбранное натуральное число от 10

до 19 делится на три?

10, 11, 12, 13, 14, 15, 16, 17, 18, 19

Ответ: 0,3

Реши самостоятельно!Какова вероятность того, что случайно выбранное натуральное число от 10 до 19 делится на три?10, 11,

Слайд 13 
На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность

того, что случайно нажатая цифра будет нечётной?

Какова вероятность того, что случайно выбранное натуральное число от 58 до 82 делится на 6?

Решение.
На клавиатуре телефона 10 цифр, из них 5 нечетных: 1, 3, 5, 7, 9. Поэтому вероятность того, что случайно будет нажата нечетная цифра равна 5 : 10 = 0,5.

Решение.
Натуральных чисел от 58 до 82 - 25 чисел, из них на 6 делятся 4 числа: 60, 66, 72, 78. Следовательно, искомая вероятность равна

 На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет

Слайд 14Задача 2. Игральный кубик бросили один раз. Какова вероятность того, что

выпало число очков, большее чем 4.

Решение:

Случайный эксперимент – бросание кубика.
Элементарное событие – число на выпавшей грани.

Ответ:1/3

Всего граней:

1, 2, 3, 4, 5, 6

Элементарные события:

N=6

N(A)=2

Задача 2. Игральный кубик бросили один раз. Какова вероятность того, что выпало число очков, большее чем 4.Решение:Случайный

Слайд 15Реши самостоятельно!
В случайном эксперименте игральный кубик бросают один раз. Найдите вероятность

того, что выпадет число, меньшее чем 4.

Ответ: 0,5

1, 2, 3, 4, 5, 6

Реши самостоятельно!В случайном эксперименте игральный кубик бросают один раз. Найдите вероятность того, что выпадет число, меньшее чем

Слайд 16Реши самостоятельно!
В случайном эксперименте игральный кубик бросают один раз. Найдите вероятность

того, что выпадет четное число.

Ответ: 0,5

1, 2, 3, 4, 5, 6

Реши самостоятельно!В случайном эксперименте игральный кубик бросают один раз. Найдите вероятность того, что выпадет четное число.Ответ: 0,51,

Слайд 17Реши самостоятельно!
В случайном эксперименте игральный кубик бросают один раз. Найдите вероятность

того, что выпадет число, отличающееся от числа 3 на единицу.

Ответ: 1/3

1, 2, 3, 4, 5, 6

Реши самостоятельно!В случайном эксперименте игральный кубик бросают один раз. Найдите вероятность того, что выпадет число, отличающееся от

Слайд 18Реши самостоятельно!
Игральный кубик бросают дважды. Найдите вероятность того, что первый раз

выпадет число 6.

Ответ: 1/6

Всего вариантов 36
Комбинаций с первой «6»
61,62,63,64,65,66

Реши самостоятельно!Игральный кубик бросают дважды. Найдите вероятность того, что первый раз выпадет число 6.Ответ: 1/6Всего вариантов 36Комбинаций

Слайд 19Задача 4. В случайном эксперименте бросают два игральных кубика. Найдите вероятность

того, что в сумме выпадет 8 очков.

Множество элементарных исходов:

Решение:

2 3 4 5 6 7

3 4 5 6 7 8

4 5 6 7 8 9

5 6 7 8 9 10

6 7 8 9 10 11

7 8 9 10 11 12

N=36

A= {сумма равна 8}

N(А)=5

Ответ:5/36

Задача 4. В случайном эксперименте бросают два игральных кубика. Найдите вероятность того, что в сумме выпадет 8

Слайд 20Реши самостоятельно!
Игральный кубик бросают дважды. Найдите вероятность того, что первый раз

и во второй раз выпадет одинаковое число очков.

Ответ: 1/6

Реши самостоятельно!Игральный кубик бросают дважды. Найдите вероятность того, что первый раз и во второй раз выпадет одинаковое

Слайд 21Реши самостоятельно!
Игральный кубик бросают дважды. Какая сумма очков наиболее вероятна?
Ответ: 7

Реши самостоятельно!Игральный кубик бросают дважды. Какая сумма очков наиболее вероятна?Ответ: 7

Слайд 22В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что

в сумме выпадет 5 очков. Результат округлите до сотых.

Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию «А = сумма очков равна 5»?

Решение:
Сумма очков может быть равна 5 в четырех случаях: «3 + 2», «2 + 3», «1 + 4», «4 + 1».
 Ответ: 4.

В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 5 очков. Результат

Слайд 23Задача 3. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность

того, что орел выпадет ровно один раз.

Решение:

орел - О

решка - Р

Возможные исходы события:

О

Р

О

О

О

Р

Р

Р

N=4

N(A)=2

Ответ:0,5

4 исхода

Задача 3. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один

Слайд 24Реши самостоятельно!
Монету бросают дважды. Найдите вероятность того, что выпадет хотя бы

один ОРЕЛ.

Ответ: 0,75

Реши самостоятельно!Монету бросают дважды. Найдите вероятность того, что выпадет хотя бы один ОРЕЛ.Ответ: 0,75

Слайд 25Реши самостоятельно!
В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того,

что наступит исход ОР (в первый раз выпадет ОРЕЛ, во второй -РЕШКА)

Ответ: 0,25

Реши самостоятельно!В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что наступит исход ОР (в первый

Слайд 26Решение:
О
О
О
О
О
О
Р
Р
Р
Р
Р
Р
Р
Р
Р
Р
Р
Р
О
О
О
О
О
О
Множество элементарных исходов:
N=8
A= {орел выпал ровно 2 }
N(А)=3
Ответ: 0,375
8 исходов
Задача 5.

В случайном эксперименте монету бросили три раза. Какова вероятность того, что орел выпал ровно два раза.
Решение:ООООООРРРРРРРРРРРРООООООМножество элементарных исходов:N=8A= {орел выпал ровно 2 }N(А)=3Ответ: 0,3758 исходовЗадача 5. В случайном эксперименте монету бросили три

Слайд 27Монету бросают три раза. Какова вероятность того, что результаты двух первых

бросков будут одинаковы?

Реши самостоятельно!

Ответ: 0,5

Монету бросают три раза. Какова вероятность того, что результаты двух первых бросков будут одинаковы?Реши самостоятельно!Ответ: 0,5

Слайд 28Монету бросают три раза. Найдите вероятность того, что результаты первого и

последнего броска различны.

Реши самостоятельно!

Ответ: 0,5

Монету бросают три раза. Найдите вероятность того, что результаты первого и последнего броска различны.Реши самостоятельно!Ответ: 0,5

Слайд 29Монету бросают четыре раза. Найдите вероятность того, что орел выпадет ровно

три раза.

Реши самостоятельно!

Ответ: 0,25

Монету бросают четыре раза. Найдите вероятность того, что орел выпадет ровно три раза.Реши самостоятельно!Ответ: 0,25

Слайд 30Реши самостоятельно!
Перед началом футбольного матча судья бросает монету, чтобы определить, какая

из команд начнет игру с мячом. Команда «Физик» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Физик» выиграет жребий ровно два раза.



Решение.
Обозначим «1» ту сторо­ну монеты,
которая отвечает за выигрыш жребия
«Физиком», другую сторону монеты
обозначим «0». Тогда благоприятных
комбинаций три: 110, 101, 011, а всего
комбинаций  8: 000, 001, 010, 011, 1
00, 101, 110, 111. Тем самым, искомая вероятность равна:
 

Реши самостоятельно!Перед началом футбольного матча судья бросает монету, чтобы определить, какая из команд начнет игру с мячом.

Слайд 31Задача 6. В соревнованиях по толканию ядра участвуют 4 спортсмена из

Финляндии, 7 спортсменов из Дании, 9 спортсменов из Швеции и 5 – из Норвегии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, который выступает последним, окажется из Швеции.

Решение:

Всего спортсменов: N= 4 + 7 + 9 + 5 = 25

A= {последний из Швеции}

N=25

N(А)=9

Ответ: 0,36

Задача 6. В соревнованиях по толканию ядра участвуют 4 спортсмена из Финляндии, 7 спортсменов из Дании, 9

Слайд 32Решение:
N= 1000
A= {аккумулятор исправен}
N(A)= 1000 – 6 = 994
Ответ: 0,994
Задача 7.

В среднем из 1000 аккумуляторов, поступивших в продажу, 6 неисправны. Найдите вероятность того, что купленный аккумулятор окажется исправным.
Решение:N= 1000A= {аккумулятор исправен}N(A)= 1000 – 6 = 994Ответ: 0,994Задача 7. В среднем из 1000 аккумуляторов, поступивших

Слайд 33Задача 8. В чемпионате по гимнастике участвуют 20 спортсменок: 8 из

России, 7 из США , остальные из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая.

Решение:

Определите N
Определите N(A)

Реши самостоятельно

Проверка:

N = 20

N(A)= 20 – 8 – 7 = 5

Ответ: 0,25

A= {первой будет спортсменка из Китая}

Задача 8. В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США , остальные

Слайд 34Задача 9. В чемпионате мира участвуют 16 команд. С помощью жребия

их нужно разделить на 4 группы по 4 команды в каждой. В ящике вперемешку лежат карточки с номерами групп:
1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4.
Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе.

Решение:

Множество элементарных событий: N=16

A={команда России во второй группе}

С номером «2» четыре карточки: N(A)=4

Ответ: 0,25

Задача 9. В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на 4 группы

Слайд 35В группе туристов 24 человека. С помощью жребия они выбирают трех

человек, которые должны идти в село за продуктами. Турист А. хотел бы сходить в магазин, но он подчиняется жребию. Какова вероятность того, что А. пойдет в магазин?

Реши самостоятельно!

Ответ: 0,125

В группе туристов 24 человека. С помощью жребия они выбирают трех человек, которые должны идти в село

Слайд 36В некотором городе из 5000 появившихся на свет младенцев оказалось 2512

мальчиков. Найдите частоту рождения девочек в этом городе. Результат округлите до тысячных.

Реши самостоятельно!

Ответ: 0,498

5000 – 2512 = 2488

В некотором городе из 5000 появившихся на свет младенцев оказалось 2512 мальчиков. Найдите частоту рождения девочек в

Слайд 37На семинар приехали 3 ученых из Норвегии, 3 из России и

4 из Испании. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что восьмым окажется доклад ученого из России.

Решение.
Всего в семинаре принимает участие 3 + 3 + 4 = 10 ученых, значит, вероятность того, что ученый, который выступает восьмым, окажется из России, равна 3:10 = 0,3.
 Ответ: 0,3.

На семинар приехали 3 ученых из Норвегии, 3 из России и 4 из Испании. Порядок докладов определяется

Слайд 38Научная конференция проводится в 5 дней. Всего запланировано 75 докладов —

первые три дня по 17 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?

Решение.
За первые три дня будет прочитан 51 доклад, на последние два дня планируется 24 доклада. Поэтому на последний день запланировано 12 докладов. Значит, вероятность того, что доклад профессора М. окажется запланированным на последний день конферен­ции, равна
 
Ответ: 0,16.

Научная конференция проводится в 5 дней. Всего запланировано 75 докладов — первые три дня по 17 докладов,

Слайд 39Задача 10. Вероятность того, что шариковая ручка пишет плохо (или не

пишет) равна 0,1. Покупатель в магазине выбирает одну такую ручку. Найдите вероятность того, что ручка пишет хорошо.

Решение:

A={ручка пишет хорошо}

Противоположное событие:

Ответ: 0,9

Задача 10. Вероятность того, что шариковая ручка пишет плохо (или не пишет) равна 0,1. Покупатель в магазине

Слайд 40Задача 11. На экзамене по геометрии школьнику достается один вопрос из

списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,2. Вероятность того, что это вопрос на тему «Параллелограмм», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Решение:

А={вопрос на тему «Вписанная окружность»}
B={вопрос на тему «Параллелограмм»}

События А и В несовместны, т.к. нет вопросов относящихся к двум темам одновременно

С={вопрос по одной из этих тем}

Р(С)=Р(А) + Р(В)

Р(С)=0,2 + 0,15=0,35

Ответ: 0,35

Задача 11. На экзамене по геометрии школьнику достается один вопрос из списка экзаменационных вопросов. Вероятность того, что

Слайд 41Ковбой Джон попадает в муху на стене с вероятностью 0,8, если

стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 2 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.

Решение.
Джон промахнется, если схватит пристрелянный револьвер и промахнется из него, или если схватит непристрелянный револьвер и промахнется из него. По формуле условной вероятности, вероятности этих событий равны соответственно 0,2·(1 − 0,8) = 0,04 и 0,8·(1 − 0,2) = 0,64. Эти события несовместны, вероятность их суммы равна сумме вероятностей этих событий: 0,04 + 0,64 = 0,68.
 
Ответ: 0,68.

Ковбой Джон попадает в муху на стене с вероятностью 0,8, если стреляет из пристрелянного револьвера. Если Джон

Слайд 42А={кофе закончится в первом автомате}
B={кофе закончится во втором автомате}
Р(А)=Р(В)=0,3
По формуле сложения

вероятностей:

Ответ: 0,52

Решение:

Задача 12. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,12. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

А={кофе закончится в первом автомате}B={кофе закончится во втором автомате}Р(А)=Р(В)=0,3По формуле сложения вероятностей:Ответ: 0,52Решение:Задача 12. В торговом центре

Слайд 43Задача 13. Биатлонист пять раз стреляет по мишеням. Вероятность попадания в

мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два раза промахнулся. Результат округлите до сотых.

Решение:

Вероятность попадания = 0,8

Вероятность промаха = 1 - 0,8 = 0,2

А={попал, попал, попал, промахнулся, промахнулся}

По формуле умножения вероятностей

Р(А)= 0,8 ∙ 0,8 ∙ 0,8 ∙ 0,2 ∙ 0,2

Р(А)= 0,512 ∙ 0,04 = 0,02048 ≈ 0,02

Ответ: 0,02

Задача 13. Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8.

Слайд 44Задача 14. В магазине стоят два платежных автомата. Каждый из них

может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.

Решение:

По формуле умножения вероятностей:

А={хотя бы один автомат исправен}

Ответ: 0,9975

Задача 14. В магазине стоят два платежных автомата. Каждый из них может быть неисправен с вероятностью 0,05

Слайд 45Если гроссмейстер А. играет белыми, то он выигрывает
у гроссмейстера Б.

с вероятностью 0,5. Если А. играет
черными, то А. выигрывает у Б. с вероятностью 0,34.
Гроссмейстеры А. и Б. играют две партии, причем во
второй партии меняют цвет фигур. Найдите вероятность того,
что А. выиграет оба раза.

Решение.
Возможность выиграть первую и вторую партию не
зависят друг от друга. Вероятность произведения
независимых событий равна произведению их
вероятностей: 0,5 · 0,34 = 0,17.
Ответ: 0,17

Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,5. Если А. играет

Слайд 46. Вероятность того, что батарейка бракованная,
равна 0,06. Покупатель в магазине

выбирает
случайную упаковку, в которой две таких батарейки.
Найдите вероятность того, что обе батарейки окажутся
исправными

Решение.
Вероятность того, что батарейка исправна,
равна 0,94. Вероятность произведения
независимых событий (обе батарейки
окажутся исправными) равна произведению
вероятностей этих событий: 0,94·0,94 = 0,8836.
 
Ответ: 0,8836

. Вероятность того, что батарейка бракованная, равна 0,06. Покупатель в магазине выбирает случайную упаковку, в которой две

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть