Слайд 1ФУНКЦИЯ Y = COS X
Ее свойства
и график
Слайд 2СЕГОДНЯ МЫ РАССМОТРИМ
Построение графика функции y = cos x;
Свойства функции y
= cos x;
Изменение графика функции y = cos x в зависимости от изменения функции и аргумента;
Изменение свойств функции y = cos x в зависимости от изменения функции и аргумента;
Примеры построения графиков функций путем анализа изменения их свойств.
Слайд 3ПОСТРОЕНИЕ ГРАФИКА
Функция y = cos x определена на всей числовой прямой
и множеством ее значений является отрезок [-1; 1]. Следовательно, график этой функции расположен в полосе между прямыми у = -1 и у = 1.
Слайд 4КАК ИСПОЛЬЗОВАТЬ ПЕРИОДИЧНОСТЬ И ЧЕТНОСТЬ ПРИ ПОСТРОЕНИИ
Так как функция периодическая с
периодом 2π, то достаточно построить ее график на каком – нибудь промежутке длиной 2π, например на отрезке -π ≤ х ≤ π; тогда на промежутках, получаемых сдвигами выбранного отрезка на 2πn, n∈Z, график будет таким – же.
Функция y = cos x является четной. Поэтому ее график симметричен относительно оси OY. Для построения графика на отрезке -π ≤ х ≤ π достаточно построить его для 0 ≤ х ≤ π, а затем симметрично отразить относительно оси OY.
Слайд 5НАЙДЕМ НЕСКОЛЬКО ТОЧЕК ДЛЯ ПОСТРОЕНИЯ ГРАФИКА НА ОТРЕЗКЕ [0; Π] И
ОТРАЗИМ, ПОЛУЧЕННУЮ ЧАСТЬ ГРАФИКА СИММЕТРИЧНО ОТНОСИТЕЛЬНО ОСИ OY.
Слайд 6РАСПРОСТРАНИМ ПОЛУЧЕННЫЙ ГРАФИК НА ВСЕЙ ЧИСЛОВОЙ ПРЯМОЙ С ПОМОЩЬЮ СДВИГОВ
НА 2Π, 4Π И Т.Д. ВПРАВО, НА -2Π, -4Π И Т.Д. ВЛЕВО, Т.Е. ВООБЩЕ НА 2ΠN, N∈Z.
Слайд 7ИТАК, ГРАФИК ФУНКЦИИ Y = COS X ПОСТРОЕН ГЕОМЕТРИЧЕСКИ НА ВСЕЙ
ЧИСЛОВОЙ ПРЯМОЙ, НАЧИНАЯ С ПОСТРОЕНИЯ ЕГО ЧАСТИ НА ОТРЕЗКЕ [0; Π]. ПОЭТОМУ СВОЙСТВА ФУНКЦИИ Y = COS X МОЖНО ПОЛУЧИТЬ , ОПИРАЯСЬ НА СВОЙСТВА ЭТОЙ ФУНКЦИИ НА ОТРЕЗКЕ [0; Π]. НАПРИМЕР, ФУНКЦИЯ Y = COS X ВОЗРАСТАЕТ НА ОТРЕЗКЕ [-Π; 0], ТАК КАК ОНА УБЫВАЕТ НА ОТРЕЗКЕ [0; Π] И ЯВЛЯЕТСЯ ЧЕТНОЙ.
ПЕРЕЧИСЛИМ ОСНОВНЫЕ СВОЙСТВА ФУНКЦИИ Y = COS X.
Слайд 8ДЛЯ ЭТОГО НУЖНО ВСПОМНИТЬ
Как найти область определения и множество значений тригонометрических
функций;
Какие функции называются периодическими и как найти период функции;
Какие функции называются четными (нечетными);
Когда функция возрастает (убывает);
Как найти нули функции;
Как определить на каких промежутках функция принимает положительные (отрицательные) значения;
Как определить когда функция принимает наибольшее (наименьшее) значения.
Слайд 9ОБЛАСТЬ ОПРЕДЕЛЕНИЯ
Каждому действительному числу х соответствует единственная точка единичной окружности, получаемая
поворотом точки (1; 0) на угол х радиан. Для этого угла определены sin x и cos x. Тем самым каждому действительному числу х поставлены в соответствие числа sin x и cos x, т.е. на множестве R всех действительных чисел определены функции y = sin x и y = cos x.
Таким образом, областью определения функций y = sin x и y = cos x является множество R всех действительных чисел.
Слайд 10МНОЖЕСТВО ЗНАЧЕНИЙ
Чтобы найти множество значений функции y = cos x, нужно
выяснить, какие значения может принимать y при различных значениях х, т.е. установить, для каких значений у есть такие значения х, при которых cos x = y. Известно, что уравнение cos x = a имеет корни, если |a| ≤ 1, и не имеет корней, если |a| > 1.
Следовательно множеством значений функции y = cos x является отрезок –1 ≤ у ≤ 1.
Слайд 11ПЕРИОДИЧНОСТЬ
Функция y = f (x) называется периодической, если существует такое число
Т ≠ 0, что для любого х из ее области определения выполняется равенство f (x – T) = f (x) = f (x + T). Число Т называется периодом функции.
Известно, что для любого значения х верны равенства sin(x + 2π)=sin x, cos(x + 2π)= cos x. Из этих равенств следует, что значения синуса и косинуса периодически повторяются при изменении аргумента на 2π. Такие функции называются периодическими с периодом 2π.
Слайд 12ЧЕТНОСТЬ, НЕЧЕТНОСТЬ
Функция y = f (x) называется четной, если для каждого
значения х из ее области определения выполняется равенство f (-x) = f (x), график симметричен относительно оси ординат.
Функция y = f (x) называется нечетной, если для каждого значения х из ее области определения выполняется равенство f (-x) = -f (x), график симметричен относительно начала координат.
Слайд 13ВОЗРАСТАНИЕ, УБЫВАНИЕ
Функция y = f(x) называется возрастающей, если наибольшему (наименьшему) значению
функции соответствует наибольшее (наименьшее) значение аргумента. Т.е. если у1 > y2 (y1 < y2), то x1 > x2 (x1 < x2).
Функция y = f(x) называется убывающей, если наибольшему (наименьшему) значению функции соответствует наименьшее (наибольшее) значение аргумента. Т.е. если у1 > y2 (y1 < y2), то x1 < x2 (x1 > x2).
Слайд 14НУЛИ ФУНКЦИИ, ПОЛОЖИТЕЛЬНЫЕ И ОТРИЦАТЕЛЬНЫЕ ЗНАЧЕНИЯ, НАИМЕНЬШЕЕ И НАИБОЛЬШЕЕ ЗНАЧЕНИЯ.
Для
того чтобы определить когда функция y = cos x принимает значения, равные:
нулю;
положительные;
отрицательные;
наименьшее;
наибольшее,
необходимо решить:
уравнение cos x = 0;
неравенство cos x > 0;
неравенство cos x < 0;
уравнение cos x = -1;
уравнение cos x = 1;
Слайд 15СВОЙСТВА ФУНКЦИИ Y = COS X
Область определения: D(f): х ∈ R;
Множество
значений: у ∈ [-1;1];
Периодичность: Т = 2π;
Четность: четная, т.к. cos(-x) = cos x, график симметричен относительно оси ординат;
Функция возрастает при: π+2πn ≤ x ≤ 2π(n+1), n∈Z;
Функция убывает при: πn ≤ x ≤ π + 2πn, n ∈ Z.
Слайд 16СВОЙСТВА ФУНКЦИИ Y = COS X (ПРОДОЛЖЕНИЕ)
Функция принимает значения:
Равные нулю при
х=π/2+πn, n∈Z;
Положительные при -π/2+2πn < x < π/2+2πn, n∈Z;
Отрицательные при π/2+2πn < x < 3π/2+2πn, n∈Z;
Наибольшее, равное 1, при x = 2πn, n ∈ Z;
Наименьшее, равное –1, при x = π + 2πn, n ∈ Z.
Слайд 17ПРЕОБРАЗОВАНИЕ ГРАФИКА ФУНКЦИИ Y = COS X
Изменение функции
y = cos x
+ а
y = k · cos x
y = - cos x
y = ⎜cos x ⎜
Изменение аргумента
y = cos (x – a)
y = cos (k · x)
y = cos (- x)
y = cos ⎢x ⎢
Слайд 18Y = COS X + А
Параллельный перенос графика функции у =
соs x вдоль оси ординат на а единиц вверх, если а > 0 и на ⎢а ⎢ единиц вниз, если а < 0.
Например: y = cos x + 2; y = cos x – 1.
Слайд 19Y = COS X + А (СВОЙСТВА)
Изменяются множество значений функции; наибольшее
(наименьшее) значения; нули функции; промежутки положительных (отрицательных) значений.
Например: y = cos x + 2.
E (f): cos x + 2 = a ⇒ cos x = a – 2, т.к. – 1 ≤ y ≤ 1, то –1 ≤ а – 2 ≤ 1 ⇒ 1 ≤ а ≤ 3, т.е. y ∈ [1; 3].
Нули функции: cos x + 2 = 0 ⇒ cos x = -2 данное уравнение не имеет корней т.к. |-2| > 1 ⇒ график данной функции не пересекает ось абсцисс.
f (x) > 0: при любом значении х.
f (x) < 0: нет.
y (наиб) = 3, при: x = 2πn, n ∈ Z (т.к. cos x + 2 = 3 ⇒ cos x = 1 ⇒ x = 2πn, n ∈Z).
y (наим) = 1, при: x = π + 2πn, n ∈Z (т.к. cos x + 2 = 1 ⇒ cos x = - 1 ⇒ x = π + 2πn, n ∈ Z).
Слайд 20Y = K · COS X
Растяжение графика функции у = соs
x вдоль оси ординат относительно оси абсцисс в k раз, если k > 0 и сжатие в 1/k раз, если 0 < k < 1.
Например: y = 3 • cos x; y = 0,5 • cos x.
Слайд 21Y = K · COS X (СВОЙСТВА)
Изменяется множество значений функции; наибольшее
(наименьшее) значения.
Например: y = 3 • cos x
E (f): 3•cos x = a ⇒ cos x = a/3, т.к. – 1 ≤ y ≤ 1, то - 1 ≤ a/3 ≤ 1 ⇒ - 3 ≤ a ≤ 3, т.е. y ∈ [-3; 3].
Функция принимает наибольшее значение, равное 3, при: x = 2πn, n ∈ Z (т.к. 3cos x = 3 ⇒ cos x = 1 ⇒ x = 2πn, n ∈ Z).
Функция принимает наименьшее значение, равное – 3, при: x = π + 2πn, n ∈ Z (т.к. 3cos x = - 3 ⇒ cos x = - 1 ⇒ x = π + 2πn, n ∈ Z).
Слайд 22Y = - COS X
Симметричное отражение графика функции y = cos
x относительно оси абсцисс.
Слайд 23Y = - COS X (СВОЙСТВА)
Изменяются промежутки возрастания (убывания); промежутки положительных
(отрицательных) значений.
Функция возрастает на отрезке [0; π] и на отрезках, получаемых сдвигами этого отрезка на 2πn, n = ±1, ±2, ±3…
Функция убывает на отрезке [π; 2π] и на отрезках, получаемых сдвигами этого отрезка на 2πn, n = ±1, ±2, ±3…
Функция принимает положительные значения на интервале (π/2; 3π/2) и на интервалах, получаемых сдвигами этого интервала на 2πn, n = ±1, ±2…
Функция принимает отрицательные значения на интервале (- π/2; π/2) и на интервалах, получаемых сдвигами этого интервала на 2πn, n = ±1, ±2…
Слайд 24Y = COS (X – A)
Параллельный перенос графика функции y =
cos x вдоль оси абсцисс на а единиц вправо, если а > 0, на ⎢а ⎢ единиц влево, если а < 0.
Например: y = cos ( x - π/2 ); y = cos ( x +π/4 ).
Слайд 25Y = COS (X – A) (СВОЙСТВА)
Изменяются: четность; промежутки возрастания (убывания);
нули функции; промежутки положительных (отрицательных) значений.
Например: y = cos (x + π/4)
Четность: f (x) ≠ f (-x) ≠ -f (x), т.к. cos (-(x + π/4)) = cos (-x - π/4)
Функция возрастает на [ 3π/4; 11π/4] + сдвиги на 2πn, n∈Z
Функция убывает на [-π/4; 3π/4 ]+ сдвиги на 2πn, n∈Z
f (x) =0 при х = π/4 +πn, n∈Z
f (x) > 0 при х∈ (-3π/4; π/4) + сдвиги на 2πn, n∈Z
f( (x) <0 при х∈ (π/4; 5π/4) + сдвиги на 2πn, n∈Z
Слайд 26Y = COS ( K · X )
Сжатие графика функции y
= cos x вдоль оси абсцисс относительно оси ординат в k раз, если k > 1 , и растяжение в 1/k раз, если 0 < k < 1.
Например: y = cos 3x; y = cos 0,5x.
Слайд 27Y = COS ( K · X ) (СВОЙСТВА)
Изменяются: период; промежутки
возрастания (убывания); нули функции; промежутки положительных (отрицательных) значений.
Например: y = cos 3x
Период: Т = 2π/3, (т.к. наименьший положительный период функции y = cos x равен 2π, то 3Т = 2π ⇒ Т = 2π/3).
Функция возрастает на [π/3; 2π/3] + сдвиги на 2πn/3, n∈Z.
Функция убывает на [0; π/3] + сдвиги на 2πn/3, n∈Z.
f (x) = 0 при х = π/6 + πn/3.
f (x) > 0 при х∈ (-π/6; π/6) + сдвиги на 2πn/3, n ∈ Z.
f (x) < 0 при х∈ (π/6; π/2) + сдвиги на 2πn/3, n ∈ Z.
Слайд 28Y = COS ( - X )
Симметричное отражение относительно оси абсцисс.
Слайд 29 Y = COS (-X) (СВОЙСТВА)
В данном случае свойства функции не
меняются, так как функция y = cos x – четная и cos (-x) = cos (x) ⇒ все свойства функции y = cos x справедливы и для функции y = cos (-x)
Слайд 30Y = 3 · COS X – 2
Построить график функции
y = 3•cos x –2 (параллельный перенос графика y = 3•cos x вдоль оси OY на 2 единицы вниз).
Построить график функции y = cos x;
Построить график функции y = 3•cos x (растяжение графика функции y = cos x вдоль оси OY в 3 раза);
Слайд 31СВОЙСТВА ФУНКЦИИ Y = 3 · COS X – 2
Область
определения: D(f): х ∈ R;
Множество значений: y ∈ [- 5; 1], т.к. –1 ≤ cos x ≤ 1 ⇒ - 3 ≤ 3cos x ≤ 3 ⇒ - 5 ≤ 3cos x – 2 ≤ 1;
Периодичность: Т = 2π;
Четность: четная, т.к. 3сos (-x) –2 = 3cos x – 2 ⇒ график функции симметричен относительно оси OY;
Возрастает: на отрезке [π; 2π] и на отрезках, получаемых сдвигами этого отрезка на 2πn, n = ±1, ±2; ±3…;
Убывает: на отрезке [0; π] и на отрезках, получаемых сдвигами этого отрезка на 2πn, n = ±1, ±2, ±3…
Слайд 32Y = 3 – 2 · COS (X + Π/2)
Построим график
функции y = cos x;
Построим график функции y = cos (x + π/2)(параллельный перенос графика функции y = cos x вдоль оси абсцисс на π/2 единиц влево);
Построим график функции y = 2cos(x + π/2)(растяжение графика функции y = cos(x + π/2) вдоль оси OY в 2 раза);
Построим график функции y = - 2cos(x + π/2)(симметричное отражение графика функции y = 2cos (x + π/2) относительно оси OX);
Построим график функции y = 3 – 2cos (x + π/2) (параллельный перенос графика функции y = - 2cos (x + π/2) вдоль оси OY на 3 единицы вверх).
Слайд 33СВОЙСТВА ФУНКЦИИ Y = 3 – 2 · COS (X +
Π/2)
Область определения: D(f): x ∈ R;
Множество значений: y ∈ [ 1; 5], т.к. –1 ≤ cos (x + π/2) ≤ 1 ⇒
–2 ≤ 2cos (x + π/2) ≤ 2 ⇒ 1 ≤ 3 – 2cos (x + π/2) ≤ 5;
Периодичность: Т = 2π;
Четность: ни четная, ни нечетная, т.к. у(-х) ≠ у(х) ≠ -у (х) (график не симметричен ни оси OY, ни началу координат )
Возрастает: на [3π/2; 5π/2] и на отрезках, получаемых сдвигами этого отрезка на 2πn, n = ±1, ±2, ±3…
Убывает: на [π/2; 3π/2] и на отрезках, получаемых сдвигами этого отрезка на 2πn, n = ±1, ±2, ±3…
Функция принимает значения равные:
нулю: нет (уравнение 3 – 2cos( x + π/2) = 0 не имеет корней т.к.|- 3/2| > 1);
положительные: при любом х;
наибольшее, равное 5: при x = π/2 + 2πn, n ∈ Z.
наименьшее, равное 1: при х = - π/2 + 2πn, n ∈ Z.