Презентация, доклад по алгебре в 10 классе на теме решение тригонометрических уравнений

ВЫЧИСЛИ УСТНО:

Слайд 1ПРОСТЕЙШИЕ ТРИГОНОМЕТРИ ЧЕСКИЕ УРАВНЕНИЯ
Учитель высшей квалификационной категории Кабанова Т.С.
МКОУ «Пановская

средняя школа »










ПРОСТЕЙШИЕ ТРИГОНОМЕТРИ ЧЕСКИЕ УРАВНЕНИЯУчитель высшей квалификационной категории Кабанова Т.С. МКОУ «Пановская средняя школа »

Слайд 2 ВЫЧИСЛИ УСТНО:



ВЫЧИСЛИ УСТНО:

Слайд 3ОТВЕТЫ:















ОТВЕТЫ:

Слайд 4УСТАНОВИТЕ СООТВЕТСТВИЕ:
1) sin x = 0

а)
2) cos x = -1 б)
3) sin x = 1 в)
4) tg x = 1 г)
5) ctgx = 0 д)




УСТАНОВИТЕ СООТВЕТСТВИЕ:1) sin x = 0         а)2) cos x

Слайд 5УСТАНОВИТЕ СООТВЕТСТВИЕ:
1) sin x = 0

а)
2) cos x = -1 б)
3) sin x = 1 в)
4) tg x = 1 г)
5) ctgx = 0 д)




УСТАНОВИТЕ СООТВЕТСТВИЕ:1) sin x = 0         а)2) cos x

Слайд 6УСТАНОВИТЕ СООТВЕТСТВИЕ:
1) sin x = 0

а)
2) cos x = -1 б)
3) sin x = 1 в)
4) tg x = 1 г)
5) ctgx = 0 д)




УСТАНОВИТЕ СООТВЕТСТВИЕ:1) sin x = 0         а)2) cos x

Слайд 7УСТАНОВИТЕ СООТВЕТСТВИЕ:
1) sin x = 0

а)
2) cos x = -1 б)
3) sin x = 1 в)
4) tg x = 1 г)
5) ctgx = 0 д)




УСТАНОВИТЕ СООТВЕТСТВИЕ:1) sin x = 0         а)2) cos x

Слайд 8УСТАНОВИТЕ СООТВЕТСТВИЕ:
1) sin x = 0

а)
2) cos x = -1 б)
3) sin x = 1 в)
4) tg x = 1 г)
5) ctgx = 0 д)




УСТАНОВИТЕ СООТВЕТСТВИЕ:1) sin x = 0         а)2) cos x

Слайд 9УСТАНОВИТЕ СООТВЕТСТВИЕ:
1) sin x = 0

а)
2) cos x = -1 б)
3) sin x = 1 в)
4) tg x = 1 г)
5) ctgx = 0 д)




УСТАНОВИТЕ СООТВЕТСТВИЕ:1) sin x = 0         а)2) cos x

Слайд 10sin t = а ,|a|< 1
Частные случаи:
а =

0 а = -1 а = 1
t = π k, t = π/2+ 2 π k, t = π/2 + 2πk, kєZ k є Z kє Z

аrcsin (-а) = - аrcsin а

t π /6 π /4 π /3
sint 1/2 √2 / 2 √3 / 2



sin t = а ,|a|< 1    Частные случаи: а = 0

Слайд 11соs t =а , |a|< 1
Частные случаи:
а = 0

а = -1 а = 1
t= π/2 + π k, t= π + 2 π k, t= 2 π k,
k є Z k є Z k є Z

аrcсos (-а) = π - аrcсos а
t π /6 π /4 π /3
cost √3 / 2 √2 /2 1/2








соs t =а , |a|< 1   Частные случаи: а = 0

Слайд 12tg t = а
Частные случаи:
а = 0

а = -1 а = 1
t = πk, k є Z t = -π/4 + π k t = π/4 + π k

аrctg (-а) = - аrctg а

t π /6 π /4 π /3
tg t √3 / 3 1 √3

tg t = а   Частные случаи: а = 0

Слайд 13сtg t = а,
Частные случаи:
а = 0

а = -1 а = 1
t = π/2 + π k, t = 3π/4+ πk, t= π/4+ πk ,
k є Z k є Z k є Z

аrcсtg (-а) = π - аrcсtg а
t π /6 π /4 π /3
ctgt √3 1 √3 / 3




сtg t = а,    Частные случаи: а = 0

Слайд 14

ЗАПОМНИ

а=0 а=1 а=-1 |a|< 1























Слайд 15 МЕТОДЫ РЕШЕНИЯ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ


ghb
Применение
формул корней


Метод введения новой переменной



V
Метод разложения


на множители



МЕТОДЫ РЕШЕНИЯ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ  УРАВНЕНИЙ ghbПрименение формул корнейМетод введения новой переменнойVМетод разложения на множители

Слайд 16НАША ЗАДАЧА: СВЕСТИ ЛЮБОЕ ТРИГОНОМЕТРИЧЕСКОЕ УРАВНЕНИЕ К ПРОСТЕЙШЕМУ ВИДУ.

НАША ЗАДАЧА:  СВЕСТИ ЛЮБОЕ ТРИГОНОМЕТРИЧЕСКОЕ УРАВНЕНИЕ  К ПРОСТЕЙШЕМУ ВИДУ.

Слайд 17ПРИМЕРЫ УРАВНЕНИЙ
х= ±arccos а + 2 k, k є Z


ПРИМЕРЫ УРАВНЕНИЙх= ±arccos а + 2  k, k є Z

Слайд 18ПРИМЕРЫ УРАВНЕНИЙ
х = (-1)n arcsin a+πn,n є z

= (-1)n

2х = (-1)n

х = (-1)n

Ответ: (-1)n









ПРИМЕРЫ УРАВНЕНИЙ х = (-1)n arcsin a+πn,n є z   2х = (-1)n

Слайд 19ПРИМЕРЫ УРАВНЕНИЙ
Это частный вид уравнения cos t=0,


t=



ПРИМЕРЫ УРАВНЕНИЙЭто частный вид уравнения cos t=0,     t=

Слайд 20ПРИМЕРЫ УРАВНЕНИЙ
x = arctg a + πk,k є z


ПРИМЕРЫ УРАВНЕНИЙx = arctg a + πk,k є z

Слайд 21РЕШИ САМ
Уровень А Уровень Б
Решите уравнения:
1.

1.
2. 2.
3. 3.






РЕШИ САМ Уровень А 		 Уровень БРешите уравнения:1.

Слайд 22РЕШИ САМ
Уровень А

Уровень Б

УРА САМ

МОЛОДЦЫ

РЕШИ САМ Уровень А

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть