Презентация, доклад по алгебре на тему: Теорема Виета

Квадратное уравнениеКвадратным уравнением называется уравнение видаax2+bx+c=0, где a, b, с ∈ R (a ≠ 0). Числа a, b, с носят следующие названия: a - первый коэффициент, b - второй коэффициент, с - свободный член.

Слайд 1Теорема Виета
Галяс Марина Юрьевна
МОУ СОШ №3
г. Комсомольск-на-Амуре, Хабаровского края

Теорема ВиетаГаляс Марина ЮрьевнаМОУ СОШ №3г. Комсомольск-на-Амуре, Хабаровского края

Слайд 2Квадратное уравнение
Квадратным уравнением называется уравнение вида
ax2+bx+c=0,
где a, b,

с ∈ R (a ≠ 0).
Числа a, b, с носят следующие названия: a - первый коэффициент, b - второй коэффициент, с - свободный член.

Квадратное уравнениеКвадратным уравнением называется уравнение видаax2+bx+c=0,  где a, b, с ∈ R (a ≠ 0).

Слайд 3Приведенное уравнение
Если в уравнении вида:
ax2+bx+c=0,
где a, b, с

∈ R
а = 1, то квадратное уравнение вида x2+px+q=0 называется приведенным.
Приведенное уравнениеЕсли в уравнении вида:ax2+bx+c=0,  где a, b, с ∈ R  а = 1, то

Слайд 4Теорема Виета
Сумма корней приведенного квадратного трехчлена x2 + px + q = 0  равна его

второму коэффициенту p с противоположным знаком, а произведение – свободному члену q.
Т. е.  x1 + x2 = – p  и   x1 x2 = q

Теорема ВиетаСумма корней приведенного квадратного трехчлена x2 + px + q = 0  равна его второму коэффициенту p с противоположным знаком,

Слайд 5Применение теоремы Виета
Теорема Виета замечательна тем, что, не зная корней квадратного

трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные выражения x1 + x2 и x1 x2.
Применение теоремы ВиетаТеорема Виета замечательна тем, что, не зная корней квадратного трехчлена, мы легко можем вычислить их

Слайд 6Вычисление корней
Так, еще не зная, как вычислить корни уравнения:
x2 + 2x – 8 = 0,

мы, тем не менее, можем сказать, что их сумма должна быть равна – 2, а произведение должно равняться –8.

Вычисление корнейТак, еще не зная, как вычислить корни уравнения: x2 + 2x – 8 = 0,  мы, тем не менее, можем сказать,

Слайд 7Пример
Теорема Виета позволяет угадывать целые корни квадратного трехчлена.
Так, находя корни

квадратного уравнения
x2 – 7x + 10 = 0,
можно начать с того, чтобы попытаться разложить свободный член (число 10) на два множителя так, чтобы их сумма равнялась бы числу 7.

ПримерТеорема Виета позволяет угадывать целые корни квадратного трехчлена. Так, находя корни квадратного уравнения x2 – 7x + 10 = 0,

Слайд 8Решение
Это разложение очевидно:
10 = 5 ⋅ 2,
5 + 2 = 7.
Отсюда должно следовать, что числа 2

и 5 являются искомыми корнями.
РешениеЭто разложение очевидно: 10 = 5 ⋅ 2, 5 + 2 = 7. Отсюда должно следовать, что числа 2 и 5 являются искомыми корнями.

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть