Частные случаи
1)cost=0
t = π/2+πk‚ kЄZ
2)cost=1
t = 0+2πk‚ kЄZ
3)cost = -1
t = π+2πk‚ kЄZ
2.sint = а, где | а |≤ 1
Частные случаи
1)sint=0
t = 0+πk‚ kЄZ
2)sint=1
t = π/2+2πk‚ kЄZ
3)sint = - 1
t = - π/2+2πk‚ kЄZ
3. tgt = а, аЄR
t = arctg а + πk‚ kЄZ
4. ctgt = а, аЄR
t = arcctg а + πk‚ kЄZ
2) cos(x+π/3) = ½
x+π/3 = ±arccos1/2 + 2πk, kЄZ
x+π/3 = ±π/3 + 2πk, kЄZ
x = -π/3 ± π/3 + 2πk, kЄZ
Ответ: -π/3 ± π/3 + 2πk, kЄZ
3) sin(π – x/3) = 0
упростим по формулам приведения
sin(x/3) = 0
частный случай
x/3 = πk, kЄZ
x = 3πk, kЄZ.
Ответ: 3πk, kЄZ.
2.Однородные
1)Первой степени:
a∙sinx + b∙cosx = 0
Т.к. sinx и cosx одновременно
не равны нулю, то разделим обе
части уравнения на cosx. Получим:
простое уравнение
a∙tgx + b = 0 или tgx = m
2)Второй степени:
a∙sin²x + b∙sinx∙cosx + c∙cos²x = 0
Разделим обе части на cos²x.
Получим квадратное уравнение:
a∙tg²x + b∙tgx + c = 0.
РЕФЛЕКСИЯ
Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.
Email: Нажмите что бы посмотреть