Слайд 1Изгиб
Презентация заключительного занятия
Автор: Катечкина З.В.преподаватель
общетехнических дисциплин
ГАПОУ СХТ
Слайд 2Цели урока
Повторение пройденного теоретического материала
Определение алгоритма решения задач
Тренинг решения задач
Составьте вопросы
по теме урока.
Работа по онлайн-тесту.
Домашнее задание:
Составить 5 тестов
Слайд 3Общие сведения
Изгибом называется вид нагружения бруса, при котором к нему прикладывается
поперечная нагрузка, лежащая в плоскости проходящей через продольную ось (рис.6.1, а). В этой же плоскости располагается изогнутая ось стержня (упругая линия) (рис.6.1, б). Брус, работающий при изгибе, называется балкой. Конструкция, состоящая из нескольких изгибаемых стержней, соединенных между собой чаще всего под углом 90, называется рамой.
Изгиб называется плоским или прямым, если плоскость действия нагрузки проходит через главную центральную ось инерции сечения (рис.6.1).
Слайд 4Общие сведения
При плоском поперечном изгибе в балке возникают два вида
внутренних усилий (рис.6.1,в): поперечная сила Qy , где y – ось симметрии (главная центральная ось) и изгибающий момент Mx. , где x – другая главная центральная ось сечения, нормальная к оси симметрии. В раме при плоском поперечном изгибе возникают три усилия: продольная N, поперечная Q силы и изгибающий момент M.
Слайд 5Если изгибающий момент Mx является единственным внутренним силовым фактором, то такой
изгиб называется чистым (рис.6.2). При наличии поперечной силы Qy изгиб называется поперечным. Строго говоря, к простым видам сопротивления относится лишь чистый изгиб; поперечный изгиб относят к простым видам сопротивления условно, так как в большинстве случаев (для достаточно длинных балок) действием поперечной силы при расчетах на прочность можно пренебречь.
Косой изгиб - изгиб, при котором нагрузки действуют в одной плоскости, не совпадающей с главными плоскостями инерции.
Сложный изгиб - изгиб, при котором нагрузки действуют в различных (произвольных) плоскостях.
Далее будем рассматривать плоский изгиб, то есть все силы будем прилагать в плоскости симметрии балки.
Слайд 6Механические испытания на изгиб
Испытания на изгиб часто используются для оценки механических
свойств материалов в хрупком или малопластичном состоянии, при воздействии коррозионной среды (коррозии под напряжением), а также для оценки пластичности и качества сварных соединений. Испытание на изгиб воспроизводит характерные для многих конструктивных элементов условия механического нагружения и позволяет выявить свойства поверхностных слоев, наиболее напряженных при разрушении.
Чаще всего образцы нагружают по схемам так называемого трехточечного (рис.6.3,а) и четырехточечного (рис.6.3,б) изгиба.
Слайд 7Результаты испытания на изгиб
Результаты испытания на изгиб представляются в виде диаграммы
P-f, где P- изгибающая нагрузка, f - стрела прогиба образца. Характерные диаграммы изгиба для хрупких (малопластичных) и пластичных материалов приведены на рис.6.4. Для хрупких материалов последняя точка диаграммы соответствует разрушению без практически остаточных деформаций. По разрушающей нагрузке определяют предел прочности материала при изгибе . Пластичные материалы, как правило, невозможно довести до разрушения: образец изгибается до состояния, когда его части располагаются параллельно друг другу.
Слайд 8Построение эпюр поперечной силы и изгибающего момента
Эпюра внутренней силы – график,
показывающий изменение этой силы по длине балки.
Для построения эпюр балка разбивается на участки, в пределах которых функция внутренней силы не меняет своего аналитического выражения. За границы участков принимаются сечения, в которых приложены внешние нагрузки: сосредоточенные силы, сосредоточенные моменты, начинается или заканчивается распределенная нагрузка одного направления и изменяющаяся по одному закону, а также начало и конец балки.
Последовательно на каждом участке вводится скользящая система координатных осей (начало координат совмещается с началом участка) и для произвольного сечения составляются выражения для определения поперечной силы и изгибающего момента. Затем по этим выражениям в пределах каждого участка строятся графики (эпюры) внутренних сил.
Слайд 9Опорные реакции
Перед тем, как определять внутренние усилия (поперечные силы и изгибающие
моменты) и строить эпюры, как правило, надо найти опорные реакции, возникающие в закреплении стержня. Чаще всего мы встречаемся с тремя видами опорных закреплений стержней: жестким защемлением (заделкой), шарнирно-неподвижной опорой и шарнирно-подвижной опорой. На рис. 6.5 показаны эти закрепления. Для неподвижной (рис 6.5,б) и подвижной (рис. 6.5,в) опор приведены два эквивалентных обозначения этих закреплений. Напомним, что при действии нагрузки в одной плоскости в заделке возникают три опорных реакции (вертикальная, горизонтальная реакции и сосредоточенный реактивный момент) (рис. 6.5,а); в шарнирно-неподвижной опоре – две реактивные силы (рис. 6.3,б); в шарнирно-подвижной опоре – одна реакция – сила, перпендикулярная плоскости опирания (рис.6.5,в).
Слайд 10Комбинируя различные типы закреплений, можно получить ряд схем балок:
1. Балка шарнирно
опертая по концам (рис.6.6,а). Одна опора шарнирно подвижная, другая – шарнирно неподвижная. Расстояние между центрами опор на схеме называется пролетом. Число реакций равно трем. Учитывая, что для плоской системы сил можно составить три независимых уравнения равновесия системы в целом, приходим к заключению, что балка статически определимая.
2. Балка шарнирно опертая с консолями (С1 и С2) (рис.6.6,б). Реакции те же. Балка статически определимая.
3. Балка жестко закрепленная одним концом (консольная балка) (рис.6.6,в). В заделке три реакции. Балка статически определимая. При действии нагрузки перпендикулярной оси реакция НВ всегда равна 0.
Слайд 11Правило знаков для внутренних силовых факторов.
Если внешняя сила вращает отрезанную часть
балки по часовой стрелке, то сила является положительной, если внешняя сила вращает отрезанную часть балки против хода часовой стрелки, то сила является отрицательной.
Если под действием внешней силы изогнутая ось балки принимает вид вогнутой чаши, такой, что идущий сверху дождь будет наполнять ее водой, то изгибающий момент является положительным. Если под действием внешней силы изогнутая ось балки принимает вид выпуклой чаши, такой, что идущий сверху дождь не будет наполнять ее водой, то изгибающий момент является отрицательным.
Слайд 12 Правило построения эпюры М называется построением эпюры со стороны растянутых
волокон, т. е. положительные значения М откладываются в сторону выпуклости изогнутой балки.
Достаточно очевидно и подтверждается опытом, что балка при изгибе деформируется таким образом, что волокна, расположенные в выпуклой части, растягиваются, а в вогнутой – сжимаются. Между ними лежит слой волокон, который лишь искривляется, не изменяя своей первоначальной длины (рис.6.8). Этот слой называется нейтральным или нулевым, а его след на плоскости поперечного сечения – нейтральной (нулевой) линией или осью.
Слайд 13На рис.6.9 показаны два случая оставшейся части: левая и правая.
Для определения
величины Qy и Mx составляются два уравнения равновесия для оставшейся части
Изгибающий момент Mx, действующий в поперечном сечении балки, по величине равен сумме моментов всех внешних сил, приложенных к рассматриваемой отсеченной части бруса, относительно центральной оси x этого сечения:
Если внешняя сила в данном сечении растягивает нижние волокна балки, то момент этой силы в этом сечении считается положительным, если растягиваются верхние волокна балки, то момент этой силы будет отрицательным.
Поперечная сила Qy в сечении бруса, по величине равна сумме проекций всех внешних сил, действующих на отсеченную часть бруса, на ось перпендикулярную оси бруса (ось y):
Слайд 14Составь решение
Уравнение момента составляется относительно оси Х, проходящей в поперечном сечении
через точку на оси балки – тогда поперечная сила в уравнение не входит и величина Mx определяется независимо от Qy. Можно доказать, что результат вычислений Qy и Mx не зависит от того, равновесие какой оставшейся части рассматривается.
Рассмотрим характерный пример (рис. 6.10,а) и установим необходимые правила. Решение задачи, как правило, начинается с определения полной системы внешних сил. Для этого отбросим опоры и заменим их соответствующими реакциями (рис. 6.10,б), выполняющими ту же роль, что и опорные закрепления.
Заданная система статически определима, следовательно, из условий равновесия системы, т.е. равенства нулю суммы моментов всех сил относительно шарнирных опор (в шарнирах нет ограничений поворота сечений балки, поэтому изгибающих моментов не возникает) и , определяем вертикальные реакции в опорах:
Для определения имеем: откуда . Для проверки правильности вычислений воспользуемся условием равенства нулю суммы всех вертикальных сил откуда получим
0 = 0.
Слайд 16Основные дифференциальные соотношения теории изгиба
Запиши формулы