Презентация, доклад и конспект урока по статистике на тему Мода и медиана в статистике. Открытый урок.Определите расход ткани на одно изделие в среднем по фабрике.

Содержание

«Статистика знает всё», - утверждали Ильф и Петров в своем знаменитом романе «Двенадцать стульев» и продолжали: «Известно, сколько какой пищи съедает в год средний гражданин республики... Известно, сколько в стране охотников, балерин... станков, велосипедов, памятников, маяков

Слайд 1Открытый урок по статистике

Структурные средние:
мода, медиана
Разработала преподаватель специальных дисциплин
Зотова

Н.Н.

Алматы 2015

Открытый урок по статистикеСтруктурные средние: мода, медианаРазработала преподаватель специальных дисциплин Зотова Н.Н.Алматы 2015

Слайд 2«Статистика знает всё», - утверждали Ильф и Петров в своем знаменитом

романе «Двенадцать стульев» и продолжали:

«Известно, сколько какой пищи съедает в год средний гражданин республики...
Известно, сколько в стране охотников, балерин... станков, велосипедов, памятников, маяков и швейных машинок...
Как много жизни, полной
пыла, страстей и мысли,
глядит на нас
со статистических таблиц!..»
«Статистика знает всё», - утверждали Ильф и Петров в своем знаменитом романе «Двенадцать стульев» и продолжали: «Известно,

Слайд 3 1. Средние в статистике - это …
2.

Виды средних … :

Актуализация опорных знаний

1. Средние в статистике - это … 2. Виды средних … :Актуализация опорных знаний

Слайд 43. Найти средние

:
д.е.
Решение
Определите среднюю годовую процентную ставку.
Задача 1. В течение

месяца в девяти контрольных точках на водоемах города производился забор проб воды для оценки соответствия санитарно-гигиеническим нормам. Ниже приведен ранжированный ряд распределения контрольных точек по проценту проб воды, не отвечающих санитарно-гигиеническим нормам:

=(11+7+8+8+11+11+12+9+10)/9=87/9=9,7%

3. Найти средние :д.е.РешениеОпределите среднюю годовую процентную ставку.Задача 1. В течение месяца в девяти контрольных точках на

Слайд 5Задача 2.
На основе приведенных данных вычислить среднюю цену хлеба.

д.е.
Решение

Задача 2. На основе приведенных данных вычислить среднюю цену хлеба.д.е.Решение

Слайд 6Задача 3. По семи цехам швейной фабрики имеются
данные о расходовании

ткани на производство продукции.

м

Определить расход ткани на одно изделие в среднем по фабрике.

Решение

Задача 3. По семи цехам швейной фабрики имеются данные о расходовании ткани на производство продукции. мОпределить расход

Слайд 7Когда нужно и не нужно
среднее арифметическое?

(варианты ответов студентов):
Сравнение уровня

зарплат в различных отраслях экономики, температуру и уровень осадков на одной и той же территории за сопоставимые периоды времени, урожайность выращиваемых культур в разных географических регионах и т. д.
Вычисление средних трат в семье на продукты, средней урожайности картофеля на огороде, средних расходов на продукты, чтобы понять, как поступать в следующий раз, чтобы не было большого перерасхода,  средней оценки за семестр – по  ней поставят оценку за год.
НО !
Нет смысла вычислять среднюю зарплату моей мамы и главы администрации президента, среднюю температуру здорового и больного человека,  средний размер обуви у меня и у моего брата.
Когда нужно и не нужно среднее арифметическое? (варианты ответов студентов):Сравнение уровня зарплат в различных отраслях экономики, температуру

Слайд 8Модой называют число ряда, которое встречается в этом ряду наиболее часто. Можно

сказать, что данное число самое «модное» в этом ряду.

Такой показатель, как мода, используется не только для числовых данных. Если, например, опросить большую группу студентов, какая из дисциплин им нравится больше всего, то модой этого ряда ответов окажется та дисциплина, которую будут называть чаще остальных.
Оценки за семестр по статистике: 4,5,5,4,4,4,4,5,5,4,5,5,4,5,5,5,5,5,5.
Получилось: «5» - 7, «4» - 5, «3» - 0, «2» - 0
Мода  равна 5.
Но мода бывает не одна, например, по статистике в октябре у студентки были такие оценки – 4,4,5,4,4,3,5,5,5.
Мод здесь две – 4 и 5

Мода – показатель, широко используемый в статистике.
Одним из наиболее частых использований моды является изучение спроса. Например, при решении вопросов, в пачки какого веса фасовать масло, какие открывать авиарейсы и т. п., предварительно изучается спрос и выявляется мода – наиболее часто встречающийся заказ.
.
Модой называют число ряда, которое встречается в этом ряду наиболее часто. Можно сказать, что данное число самое «модное»

Слайд 9Когда нужна  мода?
(варианты ответов
студентов)


Мода применяется в тех случаях, когда нужно охарактеризовать

наиболее часто встречающуюся величину признака.

Если надо, например, узнать наиболее распространенный размер заработной платы на предприятии, цену на рынке, по которой было продано наибольшее количество товаров,
самый популярный фасон и размер одежды, обуви, размер бутылки сока, пачки чипсов, пользующийся наибольшим спросом у потребителей, и т.д., в этих случаях прибегают к моде.
Когда нужна  мода?(варианты ответов студентов)Мода применяется в тех случаях, когда нужно охарактеризовать наиболее часто встречающуюся величину признака. Если

Слайд 10Нахождение моды далеко не всегда позволяет делать надежные выводы на основе

статистических данных.

Еще одной из важных статистических характеристик ряда данных является его медиана. Обычно медиану ищут в случае, когда числа в ряду являются какими-либо показателями и надо найти, например, человека, показавшего средний результат, фирму со средней годовой прибылью, авиакомпанию, предлагающую средние цены на билеты, и т. д.

При анализе результатов, показанных участниками забега на 100 метров, знание медианы позволяет преподавателю физкультуры выделить для участия
в соревнованиях группу ребят, показавших результат выше срединного.
Нахождение моды далеко не всегда позволяет делать надежные выводы на основе статистических данных. Еще одной из важных

Слайд 11Когда нужна и не нужна медиана?
(варианты ответов студентов)


Медиана чаще применяется с

другими статистическими характеристиками, но по ней одной можно отбирать результаты,
выше или ниже медианы.

Пример: в одной и той же больничной палате находится девять человек с температурой 36,6 °С, и один человек, у которого она равна 41 °С. Арифметическое среднее в этом случае равно: (36,6*9+41)/10 = 37,04 °С. Но это вовсе не означает, что каждый из присутствующих болен. Все это наталкивает на мысль, что одной средней часто бывает недостаточно, и именно поэтому в дополнение к ней используется медиана.

На выполнение домашнего задания студент тратит в течение недели такое время – 60 мин в понедельник, во вторник 103 мин, в среду 58, в четверг 76, а в пятницу 89 мин.
Записав эти числа от меньшего к большему, увидим, что посередине стоит число 76 – это называется медиана.
Когда нужна и не нужна медиана?(варианты ответов студентов)Медиана чаще применяется с другими статистическими характеристиками, но по ней

Слайд 12Исчисление моды и медианы
в дискретном и интервальном рядах

Исчисление моды и медианы в дискретном и интервальном рядах

Слайд 13Модой 
называется значение признака (варианта),
чаще всего встречающееся 
в изучаемой совокупности.


Модой называется значение признака (варианта), чаще всего встречающееся в изучаемой совокупности.

Слайд 14В дискретном ряду распределения модой является вариант признака, имеющий наибольшую частоту
Пример

1: Распределение рабочих по тарифному разряду:

Наибольшее число рабочих (18) имеют третий разряд.
Следовательно, мода для данной совокупности – 3 разряд.

Пример 2: Распределение проданной женской обуви по размерам характеризуется следующим образом:

В этом ряду распределения  модой является 37 размер
(108 проданных пар), т.е. Мо=37.

В дискретном ряду распределения модой является вариант признака, имеющий наибольшую частотуПример 1: Распределение рабочих по тарифному разряду:Наибольшее

Слайд 15Для интервального ряда распределения мода определяется по формуле:

где 
ХMo - нижняя граница

модального интервала;
hMo  - величина модального интервала;
fMo – частота модального интервала;
fMo-1  и  fMo+1 – частота интервала соответственно предшествующего модальному 
и следующего за ним
Для интервального ряда распределения мода определяется по формуле: где ХMo - нижняя граница модального интервала;hMo  - величина модального интервала;fMo – частота модального

Слайд 16Пример: Распределение рабочих по стажу работы характеризуется следующими данными.

Определить моду интервального

ряда распределения.
Пример: Распределение рабочих по стажу работы характеризуется следующими данными.Определить моду интервального ряда распределения.

Слайд 17Решение:

В данном примере модальный интервал
находится в пределах стажа работы
6-8

лет, так как на этот интервал приходится наибольшая частота (35).
Мода интервального ряда составляет
Решение:В данном примере модальный интервал находится в пределах стажа работы 6-8 лет, так как на этот интервал

Слайд 18Медиана –

это значение признака у единицы совокупности, делящая ранжированный ряд

пополам
(или стоящая
в середине
ранжированного
ряда).

Медиана – это значение признака у единицы совокупности, делящая ранжированный ряд пополам (или стоящая в середине ранжированногоряда).

Слайд 19Для нахождения медианы в дискретном ряду строится ряд накопленных частот.
Рабочих с

1, 2, 3 разрядом насчитывается 31. Эта величина меньше порядкового номера медианы. Накопленная частота для 4 разряда - 47,
т. е. превышает порядковый номер медианы.
Отсюда следует, что рабочий, имеющий порядковый номер 34, принадлежит к 4-й тарифной группе.
Следовательно, медиана в нашем примере - 4 разряд.

В данной совокупности, состоящей из 68 единиц, в середине ранжированного ряда будет находиться 34-й рабочий

Для нахождения медианы в дискретном ряду строится ряд накопленных частот.Рабочих с 1, 2, 3 разрядом насчитывается 31.

Слайд 20Для нахождения медианы в интервальном ряду
используют формулу:

где Ме

- медиана;
Х0 - нижняя граница медианного интервала (накопленная частота которого содержит единицу, стоящую в середине ряда);
hMe  - величина медианного интервала
Σf - сумма частот ряда (численность совокупностей);
SMe-1 - накопленная частота предмедианного интервала предшествующего медианному);
fMe - частота медианного интервала.
Для нахождения медианы в интервальном ряду используют формулу:где  Ме  - медиана;    Х0

Слайд 21Пример:
Распределение рабочих по стажу работы характеризуется следующими данными.

Пример: Распределение рабочих по стажу работы характеризуется следующими данными.

Слайд 22Определим медианный интервал.
Им считается тот, до которого сумма накопленных частот

меньше половины всей численности ряда, а с прибавлением его численности - больше половины. Подсчитаем накопленные итоги частот:
4, 27, 47, 82, 93,100.
Середина накопленных частот - 100/2 = 50.
Сумма первых трех меньше половины (47 < 50),
а если прибавить 35 - больше половины численности совокупности (82 > 50).
Следовательно, медианным является интервал 6-8.
Определим медиану:
Определим медианный интервал. Им считается тот, до которого сумма накопленных частот меньше половины всей численности ряда, а

Слайд 23
Обобщение изученного материала
Далеко не всегда имеет смысл вычислять

все характеристики, т.к. во многих ситуациях какая-то характеристика может не иметь никакого содержательного смысла
Обобщение изученного материалаДалеко не всегда имеет смысл вычислять все характеристики, т.к. во многих ситуациях

Слайд 24
Пример 1. На спартакиаде колледжа проводится несколько квалификационных забегов на 100

метров, по результатам которых в финал выходит ровно половина от числа всех участников. Перед вами результаты всех спортсменов. Какой результат позволяет пройти в финал?
15,5; 16,8; 21,8; 18,4; 16,2; 32,3; 19,9; 15,5; 14,7; 19,8; 20,5; 15,4.


Проранжируем ряд:
14,7; 15,4; 15,5; 15,5; 16,2; 16,8; 18,4; 19,8; 19,9; 20,5; 21,8; 32,3.
Найдем все три характеристики.
Какая характеристика, по-вашему, самая подходящая?

Мо=15,5 

Для ответа на вопрос нужно определить медиану

Пример 1. На спартакиаде колледжа проводится несколько квалификационных забегов на 100 метров, по результатам которых в финал

Слайд 25Пример 2. Перед нами ранжированный ряд, представляющий
данные о времени дорожно-транспортных происшествий

на улицах города в течение одних суток (в виде ч:мин):

0:15, 0:55, 1:20, 3:20, 4:10, 6:30, 7:15, 7:45, 8:40, 9:05, 9:20,
9:40, 10:15, 11:30, 12:10, 12:15, 13:10, 13:50, 14:10, 14:20, 14:25,
15:20, 15:45, 16:20, 16:25, 17:05, 17:30, 17:45, 17:55, 18:05, 18:15,
18:45, 18:50, 19:45, 19:55, 20:30, 20:40, 21:30, 21:45, 22:10, 22:35.

Как и для любого ряда, в данном случае мы можем найти среднее
арифметическое – оно равно 13:33.
Однако вряд ли имеет какой-то смысл утверждение типа «аварии на улицах города происходят в среднем в 13 часов 33 минуты».
В то же время, если сгруппировать данные этого ряда в интервалы,
можно найти такой временной интервал, когда происходит наибольшее количество ДТП (такую характеристику называют интервальной модой).
Получив такую характеристику, соответствующие службы должны
серьезно проанализировать, почему именно в этот временной интервал происходит наибольшее количество происшествий, и попытаться устранить их причины.

Пример 2. Перед нами ранжированный ряд, представляющий данные о времени дорожно-транспортных происшествий на улицах города в течение одних

Слайд 26Немного юмора
(высказывания о статистике):
Статистика - наука, занимающаяся изготовлением
недостоверных фактов

из достоверных цифр
(Эван Эсари)
Статистика может доказать что угодно, даже правду
(Ноэл Мойнихан)
Статистика - это наука о том, сколько всего приходится на каждого человека, если бы все делились справедливо. (Константин Мелихан)
Статистики как судебные психиатры –
они могут подтвердить правоту обеих сторон
(Фиорелло Да Тардиа)
Не принимай на веру того, что говорит статистика,
пока тщательно не изучишь, о чем она умалчивает
(Уильям Уотт)
Статистика, пожалуй, это самая божественная из наук. Ведь она переводит любое событие из разряда случайного
в разряд закономерного.
Для политиков статистика - меч, для бюрократов - щит. 
Немного юмора (высказывания о статистике):Статистика - наука, занимающаяся изготовлением недостоверных фактов из достоверных цифр (Эван Эсари) Статистика

Слайд 27По данным таблиц определить моду и медиану.
Самостоятельная работа
Вариант 1
Вариант 2
Мо =3

Мо = 2;3
Ме = 3 Ме = 2

Мо = 32 Мо = 420
Ме= 31,875 Ме = 571,43
По данным таблиц определить моду и медиану.Самостоятельная работаВариант 1Вариант 2Мо =3

Слайд 28Домашнее задание
Задача 1. Возводимая площадь на одного жителя, м2 /год


(по данным исследовании PWC «Global Construction – 2025» 

Задача 2. Имеется интервальный ряд распределения магазинов
по величине торговых площадей.

Вычислить моду и медиану в дискретном и интервальном рядах:

Домашнее задание Задача 1. Возводимая площадь на одного жителя, м2 /год (по данным исследовании PWC «Global Construction

Слайд 29В заключение нашего урока ответьте,
пожалуйста, на следующие вопросы:

Что тебе больше

сего понравилось? ______________

Что тебе меньше всего понравилось? _____________

Я узнал(а) _____________________________________

Еще я хотел(а) бы узнать ________________________

Подведение итогов

В заключение нашего урока ответьте, пожалуйста, на следующие вопросы:Что тебе больше сего понравилось? ______________Что тебе меньше всего

Слайд 30Используемые сайты
http://fb.ru/article/108141/mediana-v-statistike-ponyatie-svoystva-i-raschet

http://fb.ru/article/108141/mediana-v-statistike-ponyatie-svoystva-i-raschet#image239723
http://ramki-vsem.ru/kliparty-zhivotnye.html
http://www.neurosoft.ru/rus/product/book/hrv-2/chapter5.aspx
(http://nirvana.tomsk.ru/dictionary?id=9&word=%EC%E5%E4%E8%E0%ED%E0/)

Используемые сайтыhttp://fb.ru/article/108141/mediana-v-statistike-ponyatie-svoystva-i-raschethttp://fb.ru/article/108141/mediana-v-statistike-ponyatie-svoystva-i-raschet#image239723http://ramki-vsem.ru/kliparty-zhivotnye.htmlhttp://www.neurosoft.ru/rus/product/book/hrv-2/chapter5.aspx(http://nirvana.tomsk.ru/dictionary?id=9&word=%EC%E5%E4%E8%E0%ED%E0/)

Слайд 31Спасибо за внимание!

Успехов
в приобретении
знаний!

Спасибо за внимание!Успехов в приобретении знаний!

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть