Слайд 1Схема системы питания карбюраторного двигателя (ЗИЛ-130)
1-канал подвода воздуха к воздухоочистителю; 2-воздухоочиститель;
3-карбюратор; 4- рукоятка ручного управления воздушной заслонкой;
5-рукоятка ручного управления дроссельными заслонками;6- педаль подачи топлива;7- топливопроводы;8- указатель уровня топлива;9- датчик
Указателя уровня топлива;10- топливный бак;11- пробка горловины топливного бака; 12- кран;13- выпускная труба глушителя;14- фильтр-отстойник; 15-глушитель;16- приемные трубы глушителя;17- выпускной грубопровод; 18-топливный насос.
Слайд 3Рис. 2.12. Система питания автомобиля:
1 — топливный бак; 2 — датчик указателя
уровня топлива; 3 — карбюратор; 4 — воздушный фильтр;
5 — топливный насос; 6 — шланг подвода нагретого воздуха; 7 — выпускной трубопровод; 8 — дополнительный глушитель; 9 — основной глушитель; 10 — труба глушителя; 11 — топливопровод
Слайд 6На изучаемых карбюраторных двигателях в качестве топлива применяют бензин. Бензин представляет
собой легкоиспаряющееся жидкое топливо, получаемое из нефти двумя способами: прямой перегонкой и крекинг-процессом
Для нормального сгорания в цилиндрах двигатели и получения от двигателя максимальной мощности необходимо, чтобы бензин, применяемый в качестве топлива, обладал определенными свойствами. К основным свойствам бензинов относятся: плотность, удельная теплота сгорания, испаряемость и склонность к детонации. Кроме того, бензин не должен вызывать коррозии металла и должен сохранять свои качества длительное время без изменения.
Плотностью называют массу одного кубического сантиметра вещества, выраженную в граммах. Плотность автомобильных бензинов колеблется в пределах 0,70 ... 0,76 г/см3 (при температуре 20 °
Слайд 7Удельной теплотой сгорания называется то количество тепла, которое выделяется при полном
сгорании 1 кг топлива. Удельная теплота сгорания автомобильных бензинов колеблется в пределах 44100 ... 46200 кДж/кг.
Испаряемость является одним из главнейших показателей, характеризующих качество бензина, так как при хорошей испаряемости облегчается пуск холодного двигателя, уменьшается конденсация паров бензина в цилиндрах двигателя, в результате чего меньше разжижается масло.
Склонность топлива к детонации. При нормальных условиях сгорание рабочей смеси в цилиндрах двигателя происходит со скоростью 25 ... 30 м/с и давление в цилиндре нарастает плавко.
При применении топлива более низкого качества, перегреве двигателя, установке очень раннего момента воспламенения часть смеси начинает гореть со скоростью, доходящей до 2000 м/с. Такое взрывное сгорание смеси называется детонацией.
Слайд 8При детонационном сгорании давление в отдельных частях цилиндра резко возрастает, появляются
металлические стуки, мощность двигателя падает, появляется черный дым из глушителя. Наиболее отрицательно явление детонации сказывается на состоянии деталей кривошипно-шатунного механизма, где возможно разрушение поверхности вкладышей подшипников и разрушение отдельных деталей.
Склонность топлива к детонации условно оценивается октановым числом. Чем выше октановые числа бензинов, тем топливо меньше склонно к детонации. Октановые числа бензинов для автомобильных двигателей колеблются ь пределах 92 ... 98. Бензин с более высоким октановым числом применяют для двигателей с более высокой степенью сжатия".
Слайд 9Состав горючей смеси. Рабочий процесс в цилиндрах карбюраторного двигателя протекает очень
быстро, каждый такт в двигателе, работающем с частотой вращения коленчатого вала 2000 об/мин, совершается за 0,015 с. Горение жидкого топлива происходит относительно медленно, а необходимо, чтобы сгорание топлива в цилиндре происходило за более короткое время, чем совершается какой-либо такт. Повысить скорость сгорания до 25 ... 30 м/с можно лишь при том условии, что жидкое топливо будет размельчено на мельчайшие капельки, а затем испарено. Образование мельчайших капелек достигается распылением и испарением топлива, а быстрое сгорание происходит благодаря тщательному перемешиванию этих паров с необходимым количеством воздуха.
Слайд 10Для полного сгорания топливу необходимо строго определенное количество кислорода, находящегося в
воздухе. Если воздуха будет недостаточно, то все топливо сгореть не сможет, при избытке воздуха — топливо сгорает все, но остается неиспользованной часть кислорода в воздухе.
Установлено, что для сгорания 1 кг топлива необходимо 15 кг воздуха. Смесь такого состава носит название нормальной.
Однако при соотношении 1 : 15 полного сгорания топлива не происходит и часть его теряется.
Для полного сгорания соотношение топлива и воздуха должно быть 1 : 17 ...1 : 18, такая смесь носит название обедненной.
Вследствие избытка воздуха в обедненной смеси понижается ее теплота сгорания, что приводит к снижению скорости сгорания и мощности двигателя.
Слайд 11Для повышения мощности двигателя смесь должна гореть с наибольшей скоростью, а
это возможно при соотношении топлива и воздуха 1 : 13, такая смесь называется обогащенной. При таком составе смеси полного сгорания топлива не происходит и экономичность двигателя ухудшается, зато удается получить от него наибольшую мощность.
При соотношении топлива и воздуха меньше 1 :13 скорость горения уменьшается, экономичность двигателя и его мощность снижаются. Смесь такого состава называется богатой. Если соотношение топлива и воздуха в смеси больше 1 : 18, скорость ее горения также резко снижается, что также приводит к потере экономичности и мощности. Смесь такого состава называется бедной.
Когда содержание воздуха в смеси менее 6 кг на 1 кг топлива или более 20 кг на 1 кг топлива, горючая смесь в цилиндрах не воспламеняется.
Слайд 12В работающем двигателе обычно различают пять основных режимов: пуск холодного двигателя,
работа на малой частоте вращения коленчатого вала (холостой ход), работа при частичных нагрузках (средние нагрузки), работа при полных нагрузках и работа при резком увеличении нагрузки или частоты вращения коленчатого вала. Для каждого из режимов работы состав смеси должен быть разным.
При пуске холодного двигателя условия смесеобразования очень плохие: двигатель холодный, большая часть топлива конденсируется на стенках цилиндров и во впускном трубопроводе, а скорость потока воздуха невелика, так как коленчатый вал двигателя проворачивается с малой частотой. Для обеспечения пуска холодного двигателя смесь должна быть богатой с тем чтобы возместить ту часть топлива которая конденсируется на стенках цилиндров.
Слайд 14Процесс приготовления горючей смеси называется карбюрацией. Приготовление горючей смеси осуществляется в
приборе, называемом карбюратором. Действие карбюратора основано на принципе пульверизации . Воздух, проходящий с большой скоростью у вершины трубки, погруженной в жидкость, создает разрежение, в результате которого жидкость по трубке поднимается и под действием струи воздуха распыливается.
Слайд 16В простейшем карбюраторе различают две основные части: поплавковую и смесительную камеры.
В поплавковой камере расположен запорный механизм, состоящий из поплавка и игольчатого клапана с седлом. В смесительной камере, выполненной в виде трубы, располагается узкая горловина — диффузор, в которую выведена трубка — распылитель из поплавковой камеры. В начале распылителя расположено отверстие строго определенного сечения и формы — жиклер. Ниже диффузора расположен дроссель.
При заполнении поплавковой камеры уровень топлива повышается, поплавок, всплывая, давит на клапан и закрывает отверстие в седле .Если топливо не расходуется, то подача его в поплавковую камеру прекращается и уровень топлива остается постоянным. Выходное отверстие распылителя расположено несколько выше уровня топлива в поплавковой камере (1—2 мм).
Слайд 17Смесительная камера соединена с цилиндром двигателя впускным трубопроводом, и при такте
впуска (впускной клапан открыт) разрежение из цилиндра двигателя передается через впускное отверстие, открытое клапаном, в смесительную камеру. Скорость воздуха, проходящего в диффузоре карбюратора, увеличивается, создавая в нем разрежение. За счет разности давлений в поплавковой (атмосферное) и смесительной (ниже атмосферного) камерах топливо начнет вытекать через распылитель. Проходящим воздухом струя этого топлива разбивается на капли и, испаряясь, интенсивно перемешивается с воздухом.
Количество подаваемой в цилиндр горючей смеси изменяется открытием дросселя или увеличением частоты вращения коленчатого вала двигателя.
Уровень топлива в поплавковой камере понижается, поплавок опускается, открывая отверстие в седле запорного клапана, и топливо снова поступает в поплавковую камеру.
Слайд 18Поплавковая камера служит для поддержания необходимого уровня топлива при работе двигателя,
а смесительная камера — для приготовления смеси из паров топлива и воздуха.
Простейший карбюратор может обеспечить приготовление смеси необходимого состава только при одном определенном установившемся режиме, т. е. при постоянной частоте вращения коленчатого вала двигателя и постоянно открытом дросселе. Практически работа двигателя все время происходит при переменных нагрузках и переменной частоте вращения коленчатого вала.
Для обеспечения работы двигателя карбюратор при каждом изменении нагрузки или частоты вращения коленчатого вала должен готовить строго определенный, наивыгоднейший для данного режима состав горючей смеси.
Слайд 19Простейший карбюратор необходимо дополнить рядом устройств и приспособлений, обеспечивающих приготовление горючей
смеси необходимого состава на разных режимах работы двигателя. Чтобы получить необходимый состав горючей смеси в диапазоне от малых до больших нагрузок, в карбюратор введена главная дозирующая система.
Для получения смеси богатого состава, необходимого для пуска двигателя, карбюратор оборудуют системой пуска. Работа двигателя на малой частоте вращения коленчатого вала при холостом ходе обеспечивается системой холостого хода, которая приготавливает смесь богатого состава, когда дроссель почти закрыт. Необходимый состав смеси при полных нагрузках и при резком увеличении частоты вращения коленчатого вала достигается введением в карбюратор устройств — экономайзера и ускорительного насоса.
Слайд 21Главная дозирующая система. Основное количество смеси подается в цилиндры двигателя главной
дозирующей системой. В карбюраторах применяют главную дозирующую систему с пневматическим торможением топлива , состоящую из топливного и воздушного жиклеров и диффузора постоянного сечения.
С увеличением нагрузки (открытия дросселя) или частоты вращения коленчатого вала скорость потока воздуха в диффузоре, а следовательно, и разрежение у вершины распылителя повышается, в результате чего увеличивается истечение топлива из топливного жиклера, и смесь будет обогащаться. Для обеспечения получения смеси обедненного состава установлен воздушный жиклер, тормозящий истечение топлива в результате снижения разрежения у топливного жиклера.
Слайд 23Чем больше будет разрежение у вершины распылителя, тем больше будет поступать
воздуха через воздушный жиклер, и через распылитель будет поступать уже не топливо, а эмульсия и в диапазоне от малой частоты вращения режима холостого хода до полных нагрузок смесь будет необходимого обедненного состава.
Система холостого хода. При работе двигателя на малой частоте вращения коленчатого вала в режиме холостого хода от него требуется небольшая мощность, следовательно, дроссель почти закрыт и в цилиндры необходимо- подать небольшое количество горючей смеси. Вследствие того, что дроссель прикрыт, разрежение у распылителя настолько мало, что топливо из распылителя главной дозирующей системы поступать не будет. Топливо на этом режиме подведено за дроссель, где наибольшее разрежение.
Слайд 24Система холостого хода состоит из топливного жиклера холостого хода, воздушного жиклера,
каналов и регулировочного винта. При работе на малой частоте вращения коленчатого вала в режиме холостого хода разрежение через отверстие в стенке смесительной камеры передается в канал, а оттуда к топливному жиклеру холостого хода.
Топливо поступает к топливному жиклеру холостого хода из распылителя главного жиклера, поднимается по вертикальному каналу и поступает в горизонтальный канал. Из горизонтального канала топливо направляется в вертикальный эмульсионный канал, в который сверху через воздушный жиклер поступает воздух.
В дальнейшем к эмульсии добавляется воздух из верхнего отверстия, расположенного выше дросселя. Эмульсия попадает в смесительную камеру через нижний канал, заканчивающийся отверстием, расположенным за дросселем. Количество поступающей эмульсии изменяют регулировочным винтом, ввернутым в нижний канал.
Слайд 25Канал, расположенный выше дросселя, используется для уменьшения разрежения в системе холостого
хода, а также для плавного перехода с малой частоты вращения коленчатого вала режима холостого хода к средним нагрузкам, когда дроссель уже начнет открываться, а подачи топлива из распылителя главного жиклера еще не будет.
При открытом дросселе разрежение за ним будет передаваться не только на нижний регулируемый канал, но и на верхний При этом из обоих каналов будет поступать эмульсия, обеспечивая плавный переход от малой частоты вращения коленчатого вала на холостом ходу к средним нагрузкам
Слайд 27Пусковое устройство. Для получения смеси необходимого богатого состава, что необходимо для
пуска двигателя, в карбюраторе устанавливают воздушную заслонку с автоматическим клапаном. В момент пуска двигателя воздушную заслонку прикрывают при помощи троса из кабины водителя а дроссель автоматически приоткрывается. При таком положении заслонок большое разрежение (несмотря на малую частоту вращения коленчатого вала) создается как в смесительной камере, так и под дросселем и топливо обильно истекает из главной дозирующей системы и системы холостого хода, воздух в необходимом количестве поступает через открывающийся автоматический клапан, горючая смесь получается богатого состава и двигатель легко пускается. Как только двигатель будет пущен, воздушную заслонку необходимо постепенно открыть.
Слайд 29В приводе заслонки имеется пружина, стремящаяся удерживать ее закрытой, но при
пуске двигателя кнопку управления воздушной заслонки вдвигают на 3/4—2/3 ее полного хода и вследствие несимметричного расположения заслонки на оси поток воздуха, давя на большую часть заслонки, открывает ее. При такой конструкции заслонки смесь предохраняется от излишнего переобогащения при пуске двигателя и в то же время не дает двигателю остановиться, автоматически обогащаясь при снижении частоты вращения коленчатого вала.
В момент пуска двигателя воздушную заслонку прикрывают при помощи троса из кабины водителя , а дроссель автоматически приоткрывается
Слайд 30При таком положении заслонок большое разрежение (несмотря на малую частоту вращения
коленчатого вала) создается как в смесительной камере, так и под дросселем и топливо обильно истекает из главной дозирующей системы и системы холостого хода, воздух в необходимом количестве поступает через открывающийся автоматический клапан, горючая смесь получается богатого состава и двигатель легко пускается. Как только двигатель будет пущен, воздушную заслонку необходимо постепенно открыть.
В приводе заслонки имеется пружина, стремящаяся удерживать ее закрытой, но при пуске двигателя кнопку управления воздушной заслонки вдвигают на 3/4—2/3 ее полного хода и вследствие несимметричного расположения заслонки на оси поток воздуха, давя на большую часть заслонки, открывает ее. При такой конструкции заслонки смесь предохраняется от излишнего переобогащения при пуске двигателя и в то же время не дает двигателю остановиться, автоматически обогащаясь при снижении частоты вращения коленчатого вала.
Слайд 31Экономайзер. Главная дозирующая система карбюратора обычно регулируется так, чтобы обеспечить приготовление
смеси обедненного состава, однако при полной нагрузке двигателя от него требуется максимальная мощность, которая может быть получена только при обогащенной смеси. Обогащение смеси в карбюраторе должно осуществляться не только при полком открытии дросселя (полная нагрузка), но и при разгоне автомобиля, когда дроссель открыт не полностью.
Обогащение смеси в карбюраторе осуществляется при помощи экономайзера, подающего дополнительное топливо в смесительную камеру. Он состоит из седла, в котором размещен клапан с пружиной, жиклера экономайзера и деталей привода: рычага, серьги, тяги, планки и штока. Рычаг привода неподвижно закреплен 'на оси дросселя. При открытии дросселя до 3/4 шток, перемещаясь вниз, еще не касается клапана и он под действием пружины закрыт, т. е. дополнительной подачи топлива нет и в карбюраторе работает главная дозирующая система.
Слайд 33При положении дросселя, соответствующем 3/4 открытия (начало полных нагрузок), шток, перемещаясь,
давит на клапан и, преодолевая усилие пружины, открывает его. Дополнительное топливо начнет поступать из поплавковой камеры через отверстие в седле и жиклер в распылитель главной дозирующей системы, обогащая смесь, что позволяет получить от двигателя максимальную мощность
Слайд 34Ускорительный насос. При резком открытии дросселя увеличивается подача воздуха через смесительную
камеру карбюратора, а увеличение подачи топлива через жиклеры и распылители наступает не сразу, а через определенный промежуток времени, что приводит к резкому обеднению смеси и к остановке двигателя. Для обеспечения приемистости двигателя, т. е. способности к резкому переходу от малых к большим нагрузкам, карбюраторы имеют насос-ускоритель.
Ускорительный насос состоит из колодца, поршня с пружиной, штока, планки, тяги, рычага и двух клапанов: обратного и нагнетательного. Полость под поршнем заполнена топливом, поступающим через открытый обратный клапан.
При плавном открытии дросселя поршень насоса-ускорителя, плавно опускаясь вниз, вытесняет топливо обратно в поплавковую камеру, так как при этом обратный клапан открыт.
Слайд 36Когда дроссель открывается резко, пружина сжимается и поршень, быстро перемещаясь вниз,
давит на топливо, которое закрывает обратный клапан, и, открыв нагнетательный, через распылитель подается в смесительную камеру. Пружина, разжимаясь, продолжает перемещать поршень вниз в течение 1—2 с, необходимых для более продолжительного впрыска топлива. Если во всех рассматриваемых системах и устройствах топливо поступало в смесительную камеру под действием разности давления воздуха, то насос-ускоритель подает топливо принудительно.
Слайд 37Карбюратор К-126Б двигателя 3M3-53-12 состоит из трех основных частей (рис. 41):
воздушного патрубка с крышкой поплавковой камеры, корпуса и двух нижних патрубков. В воздушном патрубке размещена воздушная заслонка с автоматическим клапаном, а в крышке поплавковой камеры — сетчатый фильтр и запорный клапан. В корпусе карбюратора находятся поплавковая камера и две смесительные камеры с диффузорами, экономайзер с механическим приводом, ускорительный насос и жиклеры. В нижних патрубках размещены две дроссельные заслонки на общей оси, связанной с ограничителем частоты вращения коленчатого вала.
Слайд 39Карбюратор К-88АМ двигателя ЗИЛ-130 имеет две смесительные камеры, каждая из которых
обслуживает четыре цилиндра. При работе двигателя на средних нагрузках топливо из поплавковой камеры поступает через главные жиклеры, а затем через жиклеры полной мощности в эмульсионные каналы (рис. 42). В этих каналах к топливу подмешивается воздух, поступающий из воздушных жиклеров и жиклеров системы холостого хода. Образовавшаяся эмульсия попадает в смесительные камеры через кольцевые щели малых диффузоров. Поддержание постоянного состава обедненной смеси происходит за счет торможения топлива воздухом. Работа карбюратора при малой частоте вращения коленчатого вала на холостом ходу показана на рис. 43
Слайд 40В этом случае дроссельные заслонки прикрыты, разрежение, создаваемое под ними, передается
через отверстия в стенках смесительных камер в каналы системы холостого хода. Через главные жиклеры топливо из поплавковой камеры поступает к жиклерам холостого хода. По пути к топливу через воздушные жиклеры, а затем через отверстия над дроссельными заслонками подмешивается воздух. Полученная эмульсия поступает через регулируемые отверстия под дроссельные заслонки, где смешиваясь с основным потоком воздуха, образует обогащенную смесь
Слайд 43При пуске холодного двигателя (рис. 44) условия смесеобразования плохие. Надежный пуск
холодного двигателя может быть обеспечен только при богатой горючей смеси. Приготовление такой смеси обеспечивается прикрытием воздушной заслонки; дроссельные заслонки в это время будут приоткрыты.
Большое разрежение в смесительных камерах и под дроссельными заслонками вызывает обильное истечение топлива из жиклеров главной дозирующей системы и системы холостого хода, создавая этим богатую смесь, необходимую для пуска двигателя.
Топливо поступает из поплавковой камеры через главный жиклер к жиклеру полной мощности, а затем в эмульсионный канал, где оно тормозится воздухом, поступающим через воздушный жиклер. Часть топлива, прошедшая главный жиклер, поступает в жиклер холостого хода, где, смешиваясь с воздухом, образует эмульсию, которая по каналам через отверстия в смесительной камере попадает под дроссельные заслонки.
Слайд 45На полных нагрузках (рис. 45) двигателя обогащенный состав смеси получается за
счет дополнительной подачи топлива экономайзером к жиклерам полной мощности. При других нагрузках клапан экономайзера закрыт.
Топливо в основном дозируется главным жиклером, так как жиклеры полной мощности имеют большее сечение. При положении дроссельных заслонок, близком к полному открытию, планка ускорительного насоса, соединенная с тягой, перемещает толкатель вниз и открывает клапан экономайзера. Топливо по каналам поступает к жиклерам полной мощности, сечение которых рассчитано на приготовление смеси обогащенного состава.
Слайд 47При резком открытии дроссельных заслонок (рис. 46) обогащение смеси происходит при
помощи насоса-ускорителя, привод которого связан с рычагом заслонок, серьгой и тягой. Резкое перемещение штока и поршня вниз создает напор топлива, поэтому обратный шариковый клапан закрывается и топливо по каналу поступает к распылителю насоса-ускорителя, открывая нагнетательный клапан. Струя впрыснутого топлива ударяется о стенки малых диффузоров, разбивается на мельчайшие частицы, обогащая смесь для обеспечения приемистости двигателя.
С целью снижения уровня токсичности отработавших газов и уменьшения расхода топлива на модернизирован ном автомобиле ЗИЛ-130 установлен карбюратор К-90 (рис. 47), унифицированный с карбюратором К-88АМ. Основным отличием карбюратора К-90 является применение экономайзера принудительного холостого хода с электронным автоматическим управлением.
Слайд 50Система автоматического управления экономайзером (рис. 48) состоит из электронного блока управления,
установленного в кабине за щитком приборов, датчиков частоты вращения коленчатого вала, температуры охлаждающей жидкости, углового положения дроссельных заслонок и двух электромагнитных клапанов, встроенных в каналы системы холостого хода карбюратора К-90.
Датчик углового положения дроссельных заслонок представляет собой электрический контактный выключатель, установленный на карбюраторе.
Выключатель посылает электрический сигнал в блок управления при закрытом положении дроссельных заслонок.
В качестве датчика частоты вращения коленчатого вала используется прерыватель-распределитель системы зажигания. Электронный блок управления соединяется проводом с выводом К добавочного резистора. Электрические импульсы поступают в блок управления с частотой, кратной частоте вращения коленчатого вала.
Слайд 51Система работает следующим образом. В блок управления постоянно поступают сигналы от
датчика температуры охлаждающей жидкости и датчика частоты вращения коленчатого вала. Блок управления срабатывает при работе двигателя в режиме принудительного холостого хода (торможение двигателя, когда педаль управления дроссельными заслонками отпущена и дроссельные заслонки карбюратора полностью закрыты, температура охлаждающей жидкости более 60 °С, а частота вращения коленчатого вала более 1000 мин-1).
При этих условиях блок управления включает электромагнитные клапаны, которые закрывают каналы системы холостого хода.
При уменьшении частоты вращения коленчатого вала до минимальной или при увеличении частоты вращения после нажатия на педаль управления дроссельными заслонками блок управления включает электромагнитные клапаны и двигатель начинает работать в нормальном режиме.
Слайд 53Карбюратор К.-126Б (рис. 49) двигателя 3M3-53-12 аналогичен по своему устройству. Обе
смесительные камеры в этих карбюраторах работают параллельно.
Для ограничения частоты вращения коленчатого вала служит ограничитель (рис. 50), который состоит из центробежного датчика (расположенного на крышке распределительных шестерен двигателя), приводимого в действие от распределительного вала, и диафрагменного исполнительного механизма, конструктивно объединенного со смесительной камерой карбюратора и воздействующего на дроссельные заслонки. При частоте вращения коленчатого вала двигателя ниже максимальной клапан датчика открыт. Полость вакуумной камеры над диафрагмой через открытый клапан соединена с воздушным патрубком карбюратора, а полость под диафрагмой соединена со смесительной камерой. Создаваемое при этом разрежение под диафрагмой имеет небольшое значение и вал дроссельных заслонок свободно поворачивается в сторону открытия под действием пружины.
Слайд 56При превышении частоты вращения, на которую отрегулирован центробежный датчик, клапан ротора
под действием центробежной силы, преодолевая натяжение пружины, перемещается и перекрывает отверстие ротора, прекращая доступ воздуха из воздушной горловины карбюратора в полость под диафрагмой. В этот момент разрежение из смесительной камеры карбюратора через жиклеры полностью передается в полость над диафрагмой и создает силу, которая перемещает диафрагму вверх, преодолевая натяжение пружины, и через рычаг и шток прикрывает дроссельные заслонки. При этом уменьшается поступление горючей смеси в цилиндры двигателя и частота вращения коленчатого вала двигателя не повышается. С приводом от педали вал дроссельных заслонок связан ведущим и ведомым кулачками (рис. 51). При отпускании педали управлении дроссельными заслонками кулачок муфты давит на выступы валика и прикрывает заслонки, натягивая при этом пружину. В момент нажатия на педаль управления дроссельными заслонками кулачок отходит, и дроссельные заслонки под действием натянутой пружины открываются.
Слайд 58Управление карбюратором осуществляют при помощи педали, установленной на кронштейне пола кабины,
и двух ручек на панели приборов (рис. 52). Педаль и ручка управления дроссельными заслонками служат для воздействия на них. Второй ручкой управляют воздушной заслонкой. Педаль управления соединена с осью дроссельных заслонок при помощи системы тяг и рычагов, которые возвращаются в исходное положение пружиной. Одна из тяг привода имеет упругое соединение, предотвращающее поломку привода при нажатии на педаль после полного открытия дроссельных заслонок. Ручки управления дроссельными и воздушной заслонками соединены с ними гибкими тягами. Ручкой управления дроссельными заслонками можно установить и зафиксировать требуемую частоту вращения коленчатого вала, например, при прогреве двигателя. Рукояткой воздушной заслонки регулируют ее положение.