Презентация, доклад на тему Расстояние между скрещивающимися прямыми

Основные понятия Расстоянием между скрещивающимися прямыми называется длина общего перпендикуляра к данным прямым Расстоянием между скрещивающимися прямыми называется расстояние от точки одной прямой до плоскости параллельной данной прямой и содержащей вторую прямую.

Слайд 1РАССТОЯНИЕ МЕЖДУ СКРЕЩИВАЮЩИМИСЯ ПРЯМЫМИ
Координатным и векторным способом
Алферова Наталья Васильевна,
учитель математики


МКОУ «Горячеключевская СОШ»
Омского района Омской области
РАССТОЯНИЕ МЕЖДУ СКРЕЩИВАЮЩИМИСЯ ПРЯМЫМИКоординатным и векторным способомАлферова Наталья Васильевна, учитель математики МКОУ «Горячеключевская СОШ» Омского района Омской

Слайд 2Основные понятия
Расстоянием между скрещивающимися прямыми называется длина общего перпендикуляра к

данным прямым
Расстоянием между скрещивающимися прямыми называется расстояние от точки одной прямой до плоскости параллельной данной прямой и содержащей вторую прямую.
Основные понятия Расстоянием между скрещивающимися прямыми называется длина общего перпендикуляра к данным прямым Расстоянием между скрещивающимися прямыми

Слайд 3В единичном кубе ABCDA1B1C1D1 найдите расстояние между прямыми BA1 и DB1.
х
y
z
Точки A1 (1;0;1), B (1;1;0)


Вектор A1B {0;1;-1}
Точки D (0;0;0), B1 (1;1;1)
Вектор DB1 {1;1;1}
Пусть КМ ┴А1В и КМ┴DВ1, значит КМ – искомое расстояние.
Пусть точка К лежит на прямой A1B, а точка М на прямой DB1. Рассмотрим векторы А1К и DM, сонаправленные с направляющими векторами данных прямых . По лемме о коллинеарных векторах вектор А1К = а · А1В, т.е. вектор А1К{0;a;-a}, вектор DM = b · DB1, т.е. вектор DM {b;b;b}.
Тогда К(1;а;1-а), М(b;b;b) и вектор КМ {b-1;b-a;b-1+a}.

К

М

В единичном кубе ABCDA1B1C1D1 найдите расстояние между прямыми BA1 и DB1.хyz Точки A1 (1;0;1), B (1;1;0) Вектор A1B {0;1;-1} Точки D (0;0;0),

Слайд 4Решим систему из условия перпендикулярности двух векторов



KM·A1B=0

0·(b-1)+1·(b-a)-1·(b-1+a) = 0,

KM·DB1=0 1·(b-1)+1·(b-a)+1·(b-1+a) = 0

Решив систему получаем a=1/2, b=2/3, подставим эти значения в координаты вектора КМ: КМ { -1/3; 1/6; 1/6}. Найдём длину вектора |КМ| =√х²+y²+z², |КМ| =√1/9+1/36+1/36=√6/6. Ответ: √6/6

a·b = x1x2+y1y2+z1z2 = 0


Решим систему из условия перпендикулярности двух векторов  KM·A1B=0   0·(b-1)+1·(b-a)-1·(b-1+a) = 0,  KM·DB1=0

Слайд 5 В единичном кубе ABCDA1B1C1D1 найдите расстояние между прямыми BA1 и DB1.
K
M
x
y
z
KM=MB1+BB1+BK=a·DB1+B1B+b·BA1
DB1{1;1;1}, BA1 {0;-1;1}, B1B{0;0;1}

KM = {a;

a ;a} + {0; 0; 1} + {0; -b ; b}=
= {a; a- b; a+1+b}

KM·BA1=0 0·a-1·(a-b) +1·(a+1+b)=0,

KM·DB1=0 1·a+1·(a-b)+1·(a+1+b) = 0

b= -½, a= -⅓

KM {-1/3; 1/6;1/6}

|KM|= √1/9+1/36+1/36 =√6/6


В единичном кубе ABCDA1B1C1D1 найдите расстояние между прямыми BA1 и DB1. KMxyzKM=MB1+BB1+BK=a·DB1+B1B+b·BA1DB1{1;1;1}, BA1 {0;-1;1}, B1B{0;0;1}KM = {a; a ;a} + {0;

Слайд 6В правильной треугольной призме АВСА1В1С1, все ребра которой равны 1, найдите

расстояние между прямыми  АВ и СВ1 

z

y

x

Рассмотрим плоскость (А1В1С), содержащую прямую В1С и параллельную прямой АВ. Расстоянием между скрещивающимися прямыми будет расстояние от точки прямой АВ, например от А, до плоскости (А1В1С).
Введём прямоугольную систему координат ОХУZ так, чтобы ось ОХ была параллельна высоте ВН основания, ось ОУ совпадала с АС, ось ОZ совпадала с АА1.

Н

В правильной треугольной призме АВСА1В1С1, все ребра которой равны 1, найдите расстояние между прямыми  АВ и СВ1 zyx Рассмотрим

Слайд 7Рассмотрим ∆АВС в плоскости ОХУ

x
y
A
C
B
H
∆ ABC – правильный, АВ=ВС=АС=1, ВН=√3/2.
Составим уравнение

плоскости (А1В1С): Ax+By+Cz+D=0.
A1(0;0;1),
B1(√3/2; 1/2 ;1),
C(0;1;0) , подставляем координаты точек в уравнение плоскости, получим систему:
0A+0B+1C+D=0,
(√3/2)A+(1/2)B+1C+D=0,
0A+1B+0C+D=0.

Получаем C=-D, B=-D, A= (√3/3)D.
Уравнение плоскости (А1В1С1):
(√3/3)Dx-Dy-Dz+D=0, (√3/3)x-1y-1z+1=0,
Формула расстояния от точки до плоскости: d=

где (х0;у0;z0)- координаты точки A,

d = |√3/3·0-1·0-1·0 +1| / √ (√3/3)²+1+1 =√21/7. Ответ: √21/7.

х

у

z

H



Рассмотрим ∆АВС  в плоскости ОХУxyACBH∆ ABC – правильный, АВ=ВС=АС=1, ВН=√3/2.Составим уравнение плоскости (А1В1С): Ax+By+Cz+D=0. A1(0;0;1), B1(√3/2;

Слайд 8 В правильной четырехугольной пирамидеSABCD, сторона основания 3√2, боковые ребра 5

,точка М – середина ребра AS. Найдите расстояние между прямыми МD и SB.

M


K

Из точки М проведён прямую MK параллельную SB, очевидно, что МК-средняя линия ∆ ASB, SB‖ (KMD). Расстояние между прямыми MD и SB – это расстояние от точки прямой SB до плоскости (MDK).
Введём прямоугольную систему координат ОХУZ с началом в точке пересечения диагоналей О, так чтобы ось ОХ совпадала с ОА, ось ОУ с ОВ, ось ОZ с высотой OS. Сторона квадрата 3√2, =>, диагональ АС=6.
В прямоугольном ∆ АОS: AO=3, SO=4.
Составим уравнение плоскости (MKD): Ax+By+Cz+D=0,
A(3;0;0),D(0;-3;0), S(0;0;4), M(3/2;0;2)
3A+D=0
3B+D=0
(3/2)A+2C+D=0



y

x

z


В правильной четырехугольной пирамидеSABCD, сторона основания 3√2, боковые ребра 5 ,точка М – середина ребра AS.

Слайд 9M
K
A= (- 1/3)D, B=(1/3)D, C=(-1/4)D.
Уравнение плоскости (МКD):
(-1/3)Dx+(1/3)Dy+(-1/4)Dz+D=0,
(-1/3)x+(1/3)y+(-1/4)z+1=0.
Определим расстояние от точки

В(0;3;0) до плоскости (МКD) по формуле d=


d=|1+1|/√1/9+1/9+1/16=√41/12
Ответ: √41/12


z

x

y

Спасибо за внимание!!!

MKA= (- 1/3)D, B=(1/3)D, C=(-1/4)D.Уравнение плоскости (МКD): (-1/3)Dx+(1/3)Dy+(-1/4)Dz+D=0,(-1/3)x+(1/3)y+(-1/4)z+1=0.Определим расстояние от точки В(0;3;0) до плоскости (МКD) по формуле

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть