Презентация, доклад по математике Неопределенный интеграл

Понятие первообразнойФункцию F(x) называют первообразной для функции f(x) на интервале (a; b), если на нем производная функции F(x) равна f(x): Операцию, обратную дифференцированию называют интегрированием.

Слайд 1Первообразная Интеграл Разработчик: Северинова С.Б. преподаватель математики ГБПОУ ВО «Павловский техникум»




Первообразная  Интеграл    Разработчик: Северинова С.Б.  преподаватель математики  ГБПОУ ВО «Павловский техникум»

Слайд 2Понятие первообразной
Функцию F(x) называют первообразной для функции f(x) на интервале (a;

b), если на нем производная функции F(x) равна f(x):

Операцию, обратную дифференцированию называют интегрированием.


Понятие первообразнойФункцию F(x) называют первообразной для функции f(x) на интервале (a; b), если на нем производная функции

Слайд 3Примеры
f(x) = 2x; F(x) = x2
F′(x)=

(x2)′ = 2x = f(x)

f(x) = – sin x; F(x) = сos x
F′(x)= (cos x)′ = – sin x = f(x)

f(x) = 6x2 + 4; F(x) = 2x3 + 4x
F′(x)= (2x3 + 4x)′ = 6x2 + 4 = f(x)

f(x) = 1/cos2 x; F(x) = tg x
F′(x)= (tg x)′ = 1/cos2 x= f(x)

Примерыf(x) = 2x;  F(x) = x2   F′(x)= (x2)′ = 2x = f(x)f(x) = –

Слайд 4Неопределенный интеграл
Неопределенным интегралом от непрерывной на интервале (a; b) функции f(x)

называют любую ее первообразную функцию.

Где С – произвольная постоянная (const).


Неопределенный интегралНеопределенным интегралом от непрерывной на интервале (a; b) функции f(x) называют любую ее первообразную функцию.Где С

Слайд 5Примеры

Примеры

Слайд 6Таблица первообразных
f(x)
F(x)
F(x)

Таблица первообразныхf(x)F(x)F(x)

Слайд 7Три правила нахождения первообразных
1º Если F(x) есть первообразная для f(x), а

G(x) –
первообразная для g(x), то F(x) + G(x) есть
первообразная для f(x) + g(x).

2º Если F(x) есть первообразная для f(x), а k –
постоянная, то функция kF(x) есть первообразная
для kf(х).


Три правила нахождения первообразных1º Если F(x) есть первообразная для f(x), а G(x) –   первообразная для

Слайд 8Определенный интеграл
– формула Ньютона-Лейбница.
Геометрический смысл определенного интеграла заключается в том, что

определенный интеграл равен площади криволинейной трапеции, образованной линиями:
сверху ограниченной кривой у = f(x), 
и прямыми у = 0; х = а; х = b.


Определенный интеграл– формула Ньютона-Лейбница.Геометрический смысл определенного интеграла заключается в том, что определенный интеграл равен площади криволинейной трапеции,

Слайд 9Вычисление определенного интеграла

Вычисление  определенного интеграла

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть