План урока
М
a
a = b
b
a
M
a ⋂ b = M
a || b
a
b
Признак скрещивающихся прямых
D
В
А
C
a
b
Доказательство:
Допустим, что СD и АВ лежат в одной плоскости.
Пусть это будет плоскость β.
Доказать, что АВ
скрещивается с СD
А
В
С
D
α совпадает с β
Плоскости совпадают, чего быть не может, т.к. прямая СD
пересекает α. Плоскости, которой принадлежат АВ и СD не
существует и следовательно по определению скрещивающихся
прямых АВ скрещивается с СD. Ч.т.д.
Теорема о скрещивающихся прямых
D
С
B
A
Дано: АВ скрещивается с СD.
Построить α: АВ α, СD || α.
А
В
C
D
Через точку А проведем прямую
АЕ, АЕ || СD.
Е
2. Прямые АВ и АЕ пересекаются
и образуют плоскость α. АВ α,
СD || α. α – единственная плоскость.
Доказать, что α – единственная.
3. Доказательство:
α – единственная по следствию из
аксиом. Любая другая плоскость, которой принадлежит АВ,
пересекает АЕ и, следовательно, прямую СD.
Построение:
Через точку К провести
прямую а1 || а.
2. Через точку К провести
прямую b1 || b.
а
b
К
а1
b1
3. Через пересекающиеся
прямые проведем
плоскость α. α – искомая
плоскость.
В
А
C
a
D
N
M
Скрещивающиеся.
К ВN.
Определить взаимное
расположение прямых:
а) ND и AB
б) РК и ВС
в) МN и AB
К ВN.
Определить взаимное
расположение прямых:
а) ND и AB
б) РК и ВС
в) МN и AB
г) МР и AС
д) КN и AС
е) МD и BС
Задача7
Выясните взаимное расположение прямых
AB и DС; AB и BB1; BC и AD; DK и CB; KM и PB;
AC и BD; AD и CC1
P
E
A
B
C
D
M
K
Ответить на вопросы
Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.
Email: Нажмите что бы посмотреть