Решение: Всего возможных комбинаций при вбрасывании трёх кубиков: 6 * 6 *6 = 216.
Из них благоприятные исходы можно перечислить:
Таким образом, всего благоприятных исходов 15.
Вероятность найдем, как отношение числа 15 благоприятных исходов к числу всех возможных комбинаций 36.
15/216 = 0,06944444 …
Округлим до сотых. 0, 07
Решение:
Благоприятный исход: орел – орел – орел - орел.
Всего исходов : 2 · 2 · 2 · 2 = 16.
Значит, вероятность того, что решка не выпадет ни разу – есть 1/16 = 0,0625.
Решение:
Всего запланировано 75 докладов, и так как в первый день запланировано 27, то на оставшиеся два дня остается 75 – 27 = 48 докладов, при этом во второй и третий дни будет прочитано по 48 :2 = 24 доклада.
Значит вероятность, что доклад профессора М. окажется запланированным на третий день есть 24/75 = 8/25 = 0,32;
Решение:
В первом туре Василий Лукин может сыграть с 26 − 1 = 25 шашистом, из которых 3 − 1 = 2 из России.
Значит, вероятность того, что в первом туре Василий Лукин будет играть с каким-либо шашистом из России, есть 2/25 = 0,08;
Решение:
Количество карточек с номером «1» – 4 штуки. Всего карточек (команд) – 20.
Значит, вероятность того, что команда Китая окажется в первой группе равна
4/20 = 1/5 = 0,2;
Решение:
На клавиатуре телефона цифр меньше 4-х – 4 штуки (0; 1; 2; 3). Всего цифр 10.
Значит, вероятность того, что случайно нажатая цифра будет меньше 4 равна 4/10 = 0,4;
Решение:
От 41 до 56 ровно 16 чисел. Среди них четных 8 штук (42; 44; 46; 48; 50; 52; 54; 56).
Значит, вероятность того, что случайно выбранное натуральное число от 41 до 56 делится на 2 равна
8/16 = 0,5;
Решение:
Пусть один из друзей находится в некоторой группе. Вместе с ним в группе окажутся 6 человек из 20 оставшихся учащихся. Вероятность того, что друг окажется среди этих 6 человек, равна 6 : 20 = 0,3.
Решение:
Частота события «гарантийный ремонт» составляет 102 : 1000 = 0,102.
Вероятность же, что новый блендер в течение года поступит в гарантийный ремонт, равна 0,096.
Разница между частотой события и вероятностью составляет 0,102 - 0,096 = 0,006.
Решение:
На циферблате между 6 часами и 9 располагаются три часовых деления.
Всего на циферблате 12 часовых делений. Поэтому искомая вероятность равна:
3 :12 = 0,25;
Решение.
Вероятность того, что стекло куплено на первой фабрике и оно бракованное: 0,45 · 0,03 = 0,0135.
Вероятность того, что стекло куплено на второй фабрике и оно бракованное: 0,55 · 0,01 = 0,0055.
Поэтому по формуле полной вероятности вероятность того, что случайно купленное в магазине стекло окажется бракованным равна 0,0135 + 0,0055 = 0,019.
Решение.
Найдем вероятность того, что перегорят обе лампы. Эти события независимые, вероятность их произведения равно произведению вероятностей этих событий: 0,3 · 0,3 = 0,09.
Событие, состоящее в том, что не перегорит хотя бы одна лампа, противоположное. Следовательно, его вероятность равна 1 − 0,09 = 0,91.
Решение: Всего возможных 2³ = 8 вариантов: ООО, ООР, ОРО, РОО,ОРР, РОР, РРО, РРР; значит m = 8
Благоприятных 3: n = 3
Вероятность равна Р = 3/8 = 0,375.
Решение: Всего вариантов выпадения для трёх кубиков m= 6³ = 216 (каждый из кубиков имеет 6 граней).
А подходящих для нас (сумма равна 16) всего n = 6:
16 = 6+6+4 = 6+4+6 = 4+6+6 = 5+5+6 = 5+6+5 = 6+5+5.
Искомая вероятность равна Р = 6/216 = ¹⁄₃₆ ≈ 0,03.
Решение.
Возможность выиграть первую и вторую партию не зависят друг от друга. Вероятность произведения независимых событий равна произведению их вероятностей: 0,52 · 0,3 = 0,156.
Решение: Рассмотрим события .А = кофе закончится в первом автомате,
В = кофе закончится во втором автомате. Тогда
A•B = кофе закончится в обоих автоматах, A + B = кофе закончится хотя бы в одном автомате.
По условию P(A) = P(B) = 0,3; P(A•B) = 0,12.
События A и B совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения:
P(A + B) = P(A) + P(B) − P(A•B) = 0,3 + 0,3 − 0,12 = 0,48.
Следовательно, вероятность противоположного события, состоящего в том, что кофе останется в обоих автоматах, равна 1 − 0,48 = 0,52.
Решение: Результат каждого следующего выстрела не зависит от предыдущих. Поэтому события «попал при первом выстреле», «попал при втором выстреле» и т.д. независимы.
Вероятность каждого попадания равна 0,8. Значит, вероятность промаха равна 1 – 0,8 = 0,2.
1 выстрел: Р= 0,8 ; 2 выстрел : Р= 0,8 ; 3 выстрел : Р= 0,8;
4 выстрел :Р = 0,2 ;5 выстрел :Р= 0,2
По формуле умножения вероятностей независимых событий, получаем, что искомая вероятность равна:
Р=0,8 ∙ 0,8 ∙ 0,8 ∙ 0,2 ∙ 0,2 = 0,02048 ≈ 0,02.
Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.
Email: Нажмите что бы посмотреть