Тема: «Сумма углов треугольника»
Михайлова Мария Борисовна,
преподаватель математики
Тема: «Сумма углов треугольника»
Михайлова Мария Борисовна,
преподаватель математики
Евкли́д (ок. 300 г. до н. э.) — древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике.
Известен как «Отец Геометрии»
Наиболее интересен в аксиоматике Евклида последний, знаменитый пятый постулат. Среди других, интуитивно очевидных постулатов, он нарочито чужероден, его громоздкая формулировка закономерно вызывает некоторое чувство протеста и желание отыскать для него доказательство. Такие доказательства уже в древности пытались построить Птолемей и Прокл; а в Новое время из этих попыток развилась неевклидова геометрия – геометрия Лобачевского и сферическая геометрия.
Папирус из Оксиринха
содержащий небольшой фрагмент
«Начал» Евклида
И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные неограниченно эти прямые встретятся с той стороны, где углы меньше двух прямых.
Существует прямоугольник (хотя бы один), то есть четырёхугольник, у которого все углы прямые.
Сумма углов одинакова у всех треугольников.
Существует треугольник, сумма углов которого равна двум прямым.
Вариант: существует, как минимум, одна пара неравновеликих треугольников с одинаковой суммой углов.
Существует треугольник (по меньшей мере один), сумма углов которого равна двум прямым.
Вариант: существует N-угольник, сумма углов которого равна 1800*(N-2).
Эквивалентность их означает, что все они могут быть доказаны, если принять V постулат, и наоборот, заменив V постулат на любое из этих утверждений, мы сможем доказать исходный V постулат как теорему
Поэтому сумма углов треугольника при вершинах B и С равна углу ABD. Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°.
Теорема доказана.
А
В
А
В
Б
Разность суммы углов треугольника и 180° называется дефектом. Дефект пропорционален площади треугольника, таким образом, у бесконечно малых треугольников на сфере или плоскости Лобачевского сумма углов будет мало отличаться от 180°.
Сферический треугольник — геометрическая фигура на поверхности сферы, образованная пересечением трёх больших кругов. Три больших круга на поверхности сферы, не пересекающихся в одной точке, образуют восемь сферических треугольников.
Сумма углов всякого треугольника меньше и может быть сколь угодно близкой к нулю. Это непосредственно видно на модели Пуанкаре. Разность где — углы треугольника, пропорциональна его площади: Здесь q — некоторая постоянная, связанная с кривизной пространства Лобачевского. Она может служить абсолютной единицей длины аналогично тому, как в сферической геометрии особое положение занимает радиус сферы.
Модель плоскости Лобачевского – модель Пуанкаре
Задача греческого мудреца кажется сейчас нам очень простой, но надо помнить, что было это еще за 300 лет до жизни Евклида, который написал книгу, по которой обучаются геометрии до сих пор.
Чтобы измерить высоту пирамиды по ее тени, надо было знать геометрические свойства треугольника:
1) что углы при основании равнобедренного треугольника равны, и обратно - что стороны , лежащие против равных углов треугольника, равны между собой.
2) что сумма углов всякого треугольника равна двум прямым углам (1800).
Только вооруженный этим знанием Фалес вправе был заключить, что когда его собственная тень равна его росту, солнечные лучи встречают ровную почву под углом в половину прямого, и, следовательно, вершина пирамиды ,центр ее основания и конец ее тени должны обозначить равнобедренный треугольник.
(Конечно, длину тени надо было считать от средней точки квадратного основания пирамиды; ширину этого основания Фалес мог измерить непосредственно).
Метод триангуляции
Теорема о сумме углов треугольника активно «работает» в геодезии. На ней основан один из методов создания геодезической сети – метод триангуляции ( от лат. triangulum – треугольник).
Состоит в построении рядов или сетей примыкающих друг к другу треугольников и в определении положения их вершин в избранной системе координат.
В каждом треугольнике измеряют все три угла, а одну из его сторон определяют из вычислений путём последовательного решения предыдущих треугольников, начиная от того из них, в котором одна из его сторон получена из измерений.
Пример геодезического сигнала
А еще триангуляция – один из методов вычисления места нахождения абонента мобильной связи. Происходит это путем наложения координат абонента на карту местности
Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.
Email: Нажмите что бы посмотреть