Презентация, доклад на тему Теорема Пифагора (8 класс)

Содержание

О жизни Пифагора известно немного. Он родился в 580 г. до н.э. в Древней Греции на острове Самос, который находится в Эгейском море у берегов Малой Азии, поэтому его называют Пифагором Самосским.Родился Пифагор в семье резчика

Слайд 1Теорема
Пифагора
Презентацию подготовил: Спесивцев Дмитрий
Школа №4 г. Долгопрудный 8 класс
Учитель математики: Абрамова

Т.В.
ТеоремаПифагораПрезентацию подготовил: Спесивцев ДмитрийШкола №4 г. Долгопрудный 8 классУчитель математики: Абрамова Т.В.

Слайд 2О жизни Пифагора известно немного. Он родился в 580 г. до

н.э. в Древней Греции на острове Самос, который находится в Эгейском море у берегов Малой Азии, поэтому его называют Пифагором Самосским.
Родился Пифагор в семье резчика по камню, который сыскал скорее славу, чем богатство. Ещё в детстве он проявлял незаурядные способности, и когда подрос, неугомонному воображению юноши стало тесно на маленьком острове.
Пифагор перебрался в город Милеет и стал учеником Фалеса, которому в то время шёл восьмой десяток. Мудрый учёный посоветовал юноше отправиться в Египет. Когда Пифагор постиг науку египетских жрецов, то засобирался домой, чтобы там создать свою школу.
Он поселился в одной из греческих колоний Южной Италии в городе Кротоне. Там Пифагор организовал тайный союз молодёжи из представителей аристократии. Каждый вступающий отрекался от своего имущества и давал клятву хранить в тайне учения основателя. Пифагорейцы, как их позднее стали называть, занимались математикой, философией, естественными науками. В школе существовал декрет, по которому авторство всех математических работ приписывалось учителю.

(ок. 580 – ок. 500 г. до н.э.)

О жизни Пифагора известно немного. Он родился в 580 г. до н.э. в Древней Греции на острове

Слайд 3О теореме Пифагора


   Пребудет вечной истина, как скоро    Все познает слабый человек!    И

ныне теорема Пифагора    Верна, как и в его далекий век.    Обильно было жертвоприношенье    Богам от Пифагора. Сто быков    Он отдал на закланье и сожженье    За света луч, пришедший с облаков.    Поэтому всегда с тех самых пор,    Чуть истина рождается на свет,    Быки ревут, ее почуя, вслед.    Они не в силах свету помешать,    А могут лишь закрыв глаза дрожать    От страха, что вселил в них Пифаг A.Шамиссо
О теореме Пифагора    Пребудет вечной истина, как скоро    Все познает слабый человек!    И ныне теорема Пифагора    Верна,

Слайд 4Формулировка теоремы.

« Доказать, что квадрат, построенный на гипотенузе прямоугольного треугольника,

равновелик сумме квадратов, построенных на катетах»

« Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах». 

Во времена Пифагора теорема звучала так:

или

Формулировка  теоремы. « Доказать, что квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на

Слайд 5Современная формулировка:
« В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов».

   
Современная формулировка:« В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов».    

Слайд 6Доказательства теоремы
Существует около 500 различных доказательств этой теоремы (геометрических,

алгебраических, механических и т.д.).
Доказательства теоремы  Существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.).

Слайд 7Теорема Пифагора
Доказательство:
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов
Дано: прямоугольный

треугольник. с-гипотенуза, а,в-катеты.

Доказать:c2 = a2 + b2

Теорема ПифагораДоказательство:В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетовДано: прямоугольный треугольник. с-гипотенуза, а,в-катеты.

Слайд 8a
b
c2 = a2 + b2
a2 = c2 – b2
b2 = c2

– a2

Формулы:

с

abc2 = a2 + b2a2 = c2 – b2b2 = c2 – a2Формулы:с

Слайд 9Самое простое доказательство
Рассмотрим квадрат, показанный на рисунке. Сторона квадрата равна a +

c.

c

a

Самое простое доказательствоРассмотрим квадрат, показанный на рисунке. Сторона квадрата равна a + c. ca

Слайд 10


В одном случае (слева) квадрат разбит на квадрат со

стороной b и четыре прямоугольных треугольника с катетами a и c.

a

c

a

c

В другом случае (справа) квадрат разбит на два квадрата со сторонами a и c и четыре прямоугольных треугольника с катетами a и c.

a

c

Таким образом, получаем, что площадь квадрата со стороной b равна сумме площадей квадратов со сторонами a и c.

В одном случае (слева) квадрат разбит на квадрат со стороной b и четыре прямоугольных треугольника

Слайд 11Доказательство Евклида
Дано:
ABC-прямоугольный треугольник
Доказать:
SABDE=SACFG+SBCHI

Доказательство Евклида Дано: ABC-прямоугольный треугольник Доказать:SABDE=SACFG+SBCHI

Слайд 12Доказательство:
Пусть ABDE-квадрат, построенный на гипотенузе прямоугольного треугольника ABC, а ACFG

и BCHI-квадраты, построенные на его катетах. Опустим из вершины C прямого угла перпендикуляр CP на гипотенузу и продолжим его до пересечения со стороной DE квадрата ABDE в точке Q; соединим точки C и E, B и G.
Доказательство: Пусть ABDE-квадрат, построенный на гипотенузе прямоугольного треугольника ABC, а ACFG и BCHI-квадраты, построенные на его катетах.

Слайд 13Алгоритм решения задач по теореме Пифагора
Внимательно прочти задачу, разберись с

условием.
По условию сделай чертеж.
Выдели на чертеже прямоугольный треугольник.
Найди катеты и гипотенузу.
Запиши теорему Пифагора и соотнеси данные в задаче с ней.
Выполни подстановку данных.
Соотнеси полученный ответ с вопросом задачи и смыслом условия.

Алгоритм решения задач по теореме Пифагора Внимательно прочти задачу, разберись с условием. По условию сделай чертеж. Выдели

Слайд 14Решение задач
Найти неизвестную сторону треугольника

Решение задачНайти неизвестную сторону треугольника

Слайд 15Очевидно, что углы CAE=GAB(=A+90°); отсюда следует, что треугольники ACE и AGB(закрашенные

на рисунке) равны между собой (по двум сторонам и углу, заключённому между ними). Сравним далее треугольник ACE и прямоугольник PQEA; они имеют общее основание AE и высоту AP, опущенную на это основание, следовательно
SPQEA=2SACE
Точно так же квадрат FCAG и треугольник BAG имеют общее основание GA и высоту AC; значит, SFCAG=2SGAB

Отсюда и из равенства треугольников ACE и GBA вытекает равновеликость прямоугольника QPBD и квадрата CFGA; аналогично доказывается и равновеликость прямоугольника QPAE и квадрата CHIB. А отсюда, следует, что квадрат ABDE равновелик сумме квадратов ACFG и BCHI, т.е. теорема Пифагора.

Очевидно, что углы CAE=GAB(=A+90°); отсюда следует, что треугольники ACE и AGB(закрашенные на рисунке) равны между собой (по

Слайд 16Спасибо за просмотр.

Спасибо за просмотр.

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть