Презентация, доклад на тему Разработка урока по геометрии Решение задач по теме векторы

Систематизировать знания , умения и навыки учащихся по изученной теме.Совершенствовать навыки решения задач на применение теории векторов.Подготовка учащихся к контрольной работе.Геометрия приближает разум к истине.Платон.Цели урока:

Слайд 1Решение задач по теме «Векторы»
Геометрия 9 класс
МКОУ «Погорельская СОШ»

Решение задач по теме «Векторы» Геометрия 9 классМКОУ «Погорельская СОШ»

Слайд 2

Систематизировать знания , умения и навыки учащихся по изученной теме.
Совершенствовать навыки

решения задач на применение теории векторов.
Подготовка учащихся к контрольной работе.


Геометрия приближает разум к истине.
Платон.

Цели урока:

Систематизировать знания , умения и навыки учащихся по изученной теме.Совершенствовать навыки решения задач на применение теории векторов.Подготовка

Слайд 3а
b
3b
½а
Начертить два неколлинеарных вектора а и b. Постройте векторы, равные: а)

½∙а+3∙b b)2b - а

а) 1. Найдем ½∙а

2. Найдем 3∙b

3. Найдем cумму векторов по правилу треугольника

½∙а+3∙b

Найдем cумму векторов по правилу параллелограмма

½∙а+3∙b

b) 1. Найдем 2b

2. Найдем вычитание
векторов по определению

2b

а

2b - а

Найдем вычитание векторов используя понятие противоположного вектора

2b


2b+(-а)

аb3b½аНачертить два неколлинеарных вектора а и b. Постройте векторы, равные: а) ½∙а+3∙b  b)2b - аа) 1.

Слайд 4 На стороне ВС ромба АВСD лежит точка К так, что

ВК=КС, О- точка пересечения диагоналей. Выразите векторы АО, АК, КD через векторы а= АВ и b=АD


В

К

D

С

А


О

b

а

Выразим АО, АО-половина
диагонали АС

Вектор АС = а + b (по правилу пар-ма)

Выразим АК

Значит АО=½ АС

По свойству ромба АD=ВС, АD//ВС
b= ВС , ВК=½ВС, ВК=½ b

АК= а + ½ b

Выразим КD

Используем векторы b и АК

КD= b - (а + ½ b)= ½b - a

АО=½∙(а + b)

На стороне ВС ромба АВСD лежит точка К так, что ВК=КС,  О- точка пересечения диагоналей.

Слайд 5
В равнобедренной трапеции высота делит большее основание на отрезки, равные 6

и 12см. Найдите среднюю линию трапеции.

Дано: АВСD –трапеция, АD-большее основание СН-высота, НD=6см, АН=12см
Найти: КL-средняя линия

Трап. равнобедренная, <А=

Чтобы найти ср. линию надо

АD= 6+12=18cм.

ВС=МН- как отрезки прямых заключенных между параллельными прямыми ВМ//CH

Проведем высоту ВМ

(т.к. ВМ┴АD, СН┴АD)

АМ=НD=6 т.к. ∆ВМА=∆СНD

ΔВМА=ΔСНD равны по гипотенузе ВА=СD и острому углу <А=

Значит МН=12-6=6см

МН=ВС=6см

Ответ: 12см

Найдем ВС.

Решение:

В равнобедренной трапеции высота делит большее основание на отрезки, равные 6 и 12см. Найдите среднюю линию трапеции.

Слайд 6
В равнобедренной трапеции один из углов равен 60º, боковая сторона равна

10см, а меньшее основание 6 см. Найдите среднюю линию трапеции.

Дано: АВСD –трапеция, <НDC=60º АВ=10см, ВС=6см.
Найти: КL-средняя линия

Трап. Равнобедренная, <А=

Чтобы найти ср. линию надо

Рассмотрим ∆ СНD-прямоугольный

Проведем ВМ-высота

ВС=МН=6см как отрезки заключенные между пар-ми прямыми. АМ-?

∆АМВ=∆DHC по гипотенузе и острому углу. Значит АМ=НD=5см

AD=АМ+МН+НD=5+6+5=16см.

Решение:

НD=5

В равнобедренной трапеции один из углов равен 60º, боковая сторона равна 10см, а меньшее основание 6 см.

Слайд 7Дано: ABCD- квадрат. АВ=а, АС=b
Найти: ВО, ВР, РА
Решение:

На сторонах СD

квадрата АВСD лежит точка P так, что СP=PD, О-точка пересечения диагоналей. Выразите векторы ВО, ВР, РА через векторы а=ВА, b=ВС

ВО=½ВD

ВD=ВА+ВС

ВD=а + b

ВО=½(а +b)

СD=ВА=а,

СР=½СD,

СР=½СD=½ a

BР=ВС+ СР

BР=b+½а

РА=РD+DA

РD=½CD

РD=½а

DА и ВС –противоположные, DA=-b

РА=½а + (-b)

РА=½а -b

или РА=ВА-ВР

РА=а – (b +½а)=½а- b

DA=-b

Дано: ABCD- квадрат. АВ=а, АС=bНайти: ВО, ВР, РАРешение: На сторонах СD квадрата АВСD лежит точка P так,

Слайд 8Дано: ABCD- квадрат. АВ=а, АС=b
Найти: ВО, ВЕ
Решение:

На сторонах СD квадрата

АВСD лежит точка Е так, что СЕ=ЕD, О-точка пересечения диагоналей. Выразите векторы ВО, ВЕ через векторы а=ВА, b=АС

АО=½АС

АО=½b

ВА+АО=ВО

ВО=а + ½b

СЕ=½СD, СD=ВА=а

СЕ=½ a,

ВЕ=ВС+СЕ,

ВЕ= (а + b)+½а

ВС=ВА+АС= а + b

Дано: ABCD- квадрат. АВ=а, АС=bНайти: ВО, ВЕРешение: На сторонах СD квадрата АВСD лежит точка Е так, что

Слайд 9Дано: ABCD- параллелограмм.
BК=КC, СЕ:ЕD=2:3.
Найти: АК, АЕ, КЕ
Решение:

На сторонах ВС

и СD параллелограмма АВСD
отмечены точки К и Е так, что ВК=КС, СЕ:ЕD=2:3 Выразите векторы АК, АЕ, КЕ через векторы х=АВ, у=AD

АК=АВ+ВК

ВК=½ВС=½у

АК=х+½у

Дано: ABCD- параллелограмм. BК=КC, СЕ:ЕD=2:3.Найти: АК, АЕ, КЕРешение: На сторонах ВС и СD параллелограмма АВСDотмечены точки К

Слайд 10УСПЕХОВ!

УСПЕХОВ!

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть