Направление: Геометрия
г.Лермонтов 2019
Направление: Геометрия
г.Лермонтов 2019
Строение и развитие Вселенной всегда занимало ученых и будет их занимать. Вопросы мироздания ставились и решались наукой. Поэтому не удивительно, что к одному открытию одновременно подходили и физики и математики.
В каждой науке наступает время, когда необходимо собрать воедино всё уже известное и из отдельных частей построить здание.
Таким строителем в геометрии стал Евклид. Он поставил своей задачей найти законы, которым подчиняются все линии и тела в природе, и расположить эти законы в стройной системе.
5. И чтобы всякий раз, как прямая, пересекая две прямые, образует с ними внутренние односторонние углы, составляющие вместе менее дух прямых, эти прямые при неограниченном продолжении пересеклись с той стороны, с которой эти углы составляют менее двух прямых.
4. И чтобы все прямые углы были друг другу равны.
3. И чтобы из любого центра можно было описать окружность любого радиуса.
2. И чтобы ограниченную прямую можно было непрерывно продолжать по прямой.
1. Чтобы от каждой точки к каждой точке можно было провести прямую.
Он утверждал, что геометрия Евклида справедлива для сравнительно небольших расстояний одной Солнечной системы с однородной массой и кривизной пространства, равной нулю, то есть связал геометрию с физикой. Он рассмотрел пространство с отрицательной кривизной, и поэтому геометрию Лобачевского называют гиперболической.
“Предел Круга III” “Предел Круга IV”
Но что такое гиперболическая поверхность, понять гораздо сложнее, чем вообразить сферу. Один способ изобразить эту загадочную поверхность был обнаружен великим французским математиком Анри Пуанкаре. В диске Пуанкаре гиперболическая поверхность смоделирована в круге.
Модель Диска Пуанкаре
Попытаемся представить его на евклидовой плоскости. Но здесь мы сможем изобразить поверхность, состоящую только из шестиугольников (классический образец улья).
Это пример Евклидова пространства.
На плоскости каждый шестиугольник (то есть фигура, которая имеет шесть сторон), окружен шестью другими, и они все сложены вместе и точно заполняют плоскость.
Существует несколько различных вариантов изображения гиперболического пространства:
Так гиперболическую поверхность воспроизвел на компьютере математик Джеффри Викс.
Компьютерная модель гиперболической поверхности Викса
Оригинальный способ представления гиперболической поверхности изобрела математик Корнуэльского университета Дайна Таймина – с помощью вязания.
Вязаная модель гиперболической поверхности
Теперь проведем прямую через точку. Каков результат? Пятый постулат Евклида говорит, что есть только одна прямая, которую можно провести через точку, которая никогда не будет пересекать первоначальную.
Все другие линии отклонились бы относительно первоначальной линии и в конечном итоге пересекли бы ее. Мы говорим, что параллельные линии не пересекаются. Это кажется неоспоримым. Но Лобачевский и Риман предложили опровержение этого постулата.
С П А С И Б О З А В Н И М А Н И Е !
Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.
Email: Нажмите что бы посмотреть