Презентация, доклад Сфера и шар 11 класс

Содержание

Сферой называется поверхность, которая состоит из всех точек пространства, находящихся на заданном расстоянии от данной точки. Эта точка называется центром, а заданное расстояние – радиусом сферы, или шара – тела, ограниченного сферой. Шар состоит

Слайд 1 Тема урока: «Сфера и шар.» Цели: ввести понятие сферы, шара и их

элементов; вывести уравнение сферы в заданной прямоугольной системе координат; исследовать взаимное расположение сферы и плоскости. Развивающая: развивать логическое мышление, пространственное воображение; умение сравнивать, проводить аналогию; интерес к предмету; творческие способности учащихся.
Тема урока:  «Сфера и шар.» Цели: ввести понятие сферы, шара и их элементов; вывести уравнение сферы

Слайд 2 Сферой называется поверхность, которая состоит из всех точек пространства,

находящихся на заданном расстоянии от данной точки. Эта точка называется центром, а заданное расстояние – радиусом сферы, или шара – тела, ограниченного сферой. Шар состоит из всех точек пространства, находящихся на расстоянии не более заданного от данной точки.
Сферой называется поверхность, которая состоит из всех точек пространства, находящихся на заданном расстоянии от данной

Слайд 3 Отрезок, соединяющий центр шара с точкой на его поверхности,

называется радиусом шара. Отрезок, соединяющий две точки на поверхности шара и проходящий через центр, называется диаметром шара, а концы этого отрезка – диаметрально противоположными точками шара.
Отрезок, соединяющий центр шара с точкой на его поверхности, называется радиусом шара. Отрезок, соединяющий две

Слайд 4 Чему равно расстояние между диаметрально противоположными точками шара, если

известна удаленность точки, лежащей на поверхности шара от центра?

?

18

Чему равно расстояние между диаметрально противоположными точками шара, если известна удаленность точки, лежащей на поверхности

Слайд 5 Шар можно рассматривать как тело, полученное от вращения полукруга

вокруг диаметра как оси.
Шар можно рассматривать как тело, полученное от вращения полукруга вокруг диаметра как оси.

Слайд 6 Пусть известна площадь полукруга. Найдите радиус шара, который получается

вращением этого полукруга вокруг диаметра.

?

4

Пусть известна площадь полукруга. Найдите радиус шара, который получается вращением этого полукруга вокруг диаметра.?4

Слайд 7Теорема. Любое сечение шара плоскостью есть круг. Перпендикуляр, опущенный из центра

шара на секущую плоскость, попадает в центр этого круга.

Дано:



Доказать:



Теорема. Любое сечение шара плоскостью есть круг. Перпендикуляр, опущенный из центра шара на секущую плоскость, попадает в

Слайд 8Доказательство:
Рассмотрим прямоугольный треугольник, вершинами которого являются центр шара, основание

перпендикуляра, опущенного из центра на плоскость, и произвольная точка сечения.
Доказательство:  Рассмотрим прямоугольный треугольник, вершинами которого являются центр шара, основание перпендикуляра, опущенного из центра на плоскость,

Слайд 9Следствие. Если известны радиус шара и расстояние от центра шара до

плоскости сечения, то радиус сечения вычисляется по теореме Пифагора.


Следствие. Если известны радиус шара и расстояние от центра шара до плоскости сечения, то радиус сечения вычисляется

Слайд 10 Пусть известны диаметр шара и расстояние от центра шара

до секущей плоскости. Найдите радиус круга, получившегося сечения.

?

10

Пусть известны диаметр шара и расстояние от центра шара до секущей плоскости. Найдите радиус круга,

Слайд 11Чем меньше расстояние от центра шара до плоскости, тем больше радиус

сечения.









Чем меньше расстояние от центра шара до плоскости, тем больше радиус сечения.

Слайд 12 В шаре радиуса пять проведен диаметр и два сечения,

перпендикулярных этому диаметру. Одно из сечений находится на расстоянии три от центра шара, а второе – на таком же расстоянии от ближайшего конца диаметра. Отметьте то сечение, радиус которого больше.

?


В шаре радиуса пять проведен диаметр и два сечения, перпендикулярных этому диаметру. Одно из сечений

Слайд 13Задача.
На сфере радиуса R взяты три точки, являющиеся вершинами

правильного треугольника со стороной а. На каком расстоянии от центра сферы расположена плоскость, проходящая через эти три точки?

Дано:



Найти:







Задача.  На сфере радиуса R взяты три точки, являющиеся вершинами правильного треугольника со стороной а. На

Слайд 14 Рассмотрим пирамиду с вершиной в центре шара и основанием

– данным треугольником.

Решение:






Рассмотрим пирамиду с вершиной в центре шара и основанием – данным треугольником.Решение:

Слайд 15 Найдем радиус описанной окружности, а затем рассмотрим один из

треугольников, образованных радиусом, боковым ребром пирамиды и высотой,. Найдем высоту по теореме Пифагора.

Решение:








Найдем радиус описанной окружности, а затем рассмотрим один из треугольников, образованных радиусом, боковым ребром пирамиды

Слайд 16 Наибольший радиус сечения получается, когда плоскость проходит через центр

шара. Круг, получаемый в этом случае, называется большим кругом. Большой круг делит шар на два полушара.
Наибольший радиус сечения получается, когда плоскость проходит через центр шара. Круг, получаемый в этом случае,

Слайд 17 В шаре, радиус которого известен, проведены два больших круга.

Какова длина их общего отрезка?

?

12

В шаре, радиус которого известен, проведены два больших круга. Какова длина их общего отрезка??12

Слайд 18Плоскость и прямая, касательные к сфере.
Плоскость, имеющая со сферой

только одну общую точку, называется касательной плоскостью. Касательная плоскость перпендикулярна радиусу, проведенному в точку касания.
Плоскость и прямая, касательные к сфере.  Плоскость, имеющая со сферой только одну общую точку, называется касательной

Слайд 19 Пусть шар, радиус которого известен, лежит на горизонтальной плоскости.

В этой плоскости через точку касания и точку В проведен отрезок, длина которого известна. Чему равно расстояние от центра шара до противоположного конца отрезка?

?

6

Пусть шар, радиус которого известен, лежит на горизонтальной плоскости. В этой плоскости через точку касания

Слайд 20 Прямая называется касательной, если она имеет со сферой ровно

одну общую точку. Такая прямая перпендикулярна радиусу, проведенному в точку касания. Через любую точку сферы можно провести бесчисленное множество касательных прямых.
Прямая называется касательной, если она имеет со сферой ровно одну общую точку. Такая прямая перпендикулярна

Слайд 21 Дан шар, радиус которого известен. Вне шара взята точка,

и через нее проведена касательная к шару. Длина отрезка касательной от точки вне шара до точки касания также известна. На каком расстоянии от центра шара расположена внешняя точка?

?

4

Дан шар, радиус которого известен. Вне шара взята точка, и через нее проведена касательная к

Слайд 22 Стороны треугольника 13см, 14см и 15см. Найти расстояние от

плоскости треугольника до центра шара, касающегося сторон треугольника. Радиус шара равен 5 см.

Задача.

Дано:



Найти:





Стороны треугольника 13см, 14см и 15см. Найти расстояние от плоскости треугольника до центра шара, касающегося

Слайд 23 Сечение сферы, проходящее через точки касания, - это вписанная

в треугольник АВС окружность.

Решение:


Сечение сферы, проходящее через точки касания, - это вписанная в треугольник АВС окружность.Решение:

Слайд 24 Вычислим радиус окружности, вписанной в треугольник.
Решение:







Вычислим радиус окружности, вписанной в треугольник.Решение:

Слайд 25 Зная радиус сечения и радиус шара, найдем искомое расстояние.
Решение:







Зная радиус сечения и радиус шара, найдем искомое расстояние.Решение:

Слайд 26 Через точку на сфере, радиус которой задан, проведен большой

круг и сечение, пересекающее плоскость большого круга под углом шестьдесят градусов. Найдите площадь сечения.

?

π

Через точку на сфере, радиус которой задан, проведен большой круг и сечение, пересекающее плоскость большого

Слайд 27Взаимное расположение двух шаров.
Если два шара или сферы имеют

только одну общую точку, то говорят, что они касаются. Их общая касательная плоскость перпендикулярна линии центров (прямой, соединяющей центры обоих шаров).
Взаимное расположение двух шаров.  Если два шара или сферы имеют только одну общую точку, то говорят,

Слайд 28 Касание шаров может быть внутренним и внешним.

Касание шаров может быть внутренним и внешним.

Слайд 29 Расстояние между центрами двух касающихся шаров равно пяти, а

радиус одного из шаров равен трем. Найдите те значения, которые может принимать радиус второго шара.

?

2

8

Расстояние между центрами двух касающихся шаров равно пяти, а радиус одного из шаров равен трем.

Слайд 30 Две сферы пересекаются по окружности. Линия центров перпендикулярна плоскости

этой окружности и проходит через ее центр.
Две сферы пересекаются по окружности. Линия центров перпендикулярна плоскости этой окружности и проходит через ее

Слайд 31 Две сферы одного радиуса, равного пяти, пересекаются, а их

центры находятся на расстоянии восьми. Найдите радиус окружности, по которой сферы пересекаются. Для этого необходимо рассмотреть сечение, проходящее через центры сфер.

?

3

Две сферы одного радиуса, равного пяти, пересекаются, а их центры находятся на расстоянии восьми. Найдите

Слайд 32Вписанная и описанная сферы.
Сфера (шар) называется описанной около многогранника,

если все вершины многогранника лежат на сфере.
Вписанная и описанная сферы.  Сфера (шар) называется описанной около многогранника, если все вершины многогранника лежат на

Слайд 33 Какой четырехугольник может лежать в основании пирамиды, вписанной в

сферу?

?



Какой четырехугольник может лежать в основании пирамиды, вписанной в сферу??

Слайд 34 Сфера называется вписанной в многогранник, в частности, в пирамиду,

если она касается всех граней этого многогранника (пирамиды).
Сфера называется вписанной в многогранник, в частности, в пирамиду, если она касается всех граней этого

Слайд 35 В основании треугольной пирамиды лежит равнобедренный треугольник, основание и

боковые стороны известны. Все боковые ребра пирамиды равны 13. Найти радиусы описанного и вписанного шаров.

Задача.

Дано:


Найти:







В основании треугольной пирамиды лежит равнобедренный треугольник, основание и боковые стороны известны. Все боковые ребра

Слайд 36I этап. Нахождение радиуса вписанного шара.
1) Центр описанного шара

удален от всех вершин пирамиды на одинаковое расстояние, равное радиусу шара, и в частности, от вершин треугольника АВС. Поэтому он лежит на перпендикуляре к плоскости основания этого треугольника, который восстановлен из центра описанной окружности. В данном случае этот перпендикуляр совпадает с высотой пирамиды, поскольку ее боковые ребра равны.

Решение:









I этап.  Нахождение радиуса вписанного шара.  1) Центр описанного шара удален от всех вершин пирамиды

Слайд 372) Вычислим радиус описанной около основания окружности.
Решение:





2) Вычислим радиус описанной около основания окружности.Решение:

Слайд 383) Найдем высоту пирамиды.
Решение:




3) Найдем высоту пирамиды.Решение:

Слайд 394) Радиус описанного шара найдем из треугольника, образованного радиусом шара и

частью высоты, прилежащей к основанию пирамиды.

Решение:







4) Радиус описанного шара найдем из треугольника, образованного радиусом шара и частью высоты, прилежащей к основанию пирамиды.Решение:

Слайд 40 Соединим центр вписанного шара со всеми вершинами пирамиды, тем

самым мы разделим ее на несколько меньших пирамид. В данном случае их четыре. Высоты всех пирамид одинаковы и равны радиусу вписанного шара, а основания – это грани исходной пирамиды.

Решение:


II этап. Нахождение радиуса вписанного шара.










Соединим центр вписанного шара со всеми вершинами пирамиды, тем самым мы разделим ее на несколько

Слайд 411) Найдем площадь каждой грани пирамиды и ее полную поверхность.
Решение:





1) Найдем площадь каждой грани пирамиды и ее полную поверхность.Решение:

Слайд 422) Вычислим объем пирамиды и радиус вписанного

шара.

Решение:




2) Вычислим объем пирамиды      и радиус вписанного шара.Решение:

Слайд 43 Второй способ вычисления радиуса вписанной сферы основан на том,

что центр шара, вписанного в двугранный угол, равноудален от его сторон, и, следовательно, лежит на биссекторной плоскости.
Второй способ вычисления радиуса вписанной сферы основан на том, что центр шара, вписанного в двугранный

Слайд 44Сторона основания правильной четырехугольной пирамиды равна 6, а угол между основанием

и боковой гранью равен 600. Определить радиус вписанной сферы.

Задача.

Дано:



Найти:






Сторона основания правильной четырехугольной пирамиды равна 6, а угол между основанием и боковой гранью равен 600. Определить

Слайд 45Проведем сечение через вершину пирамиды и середины двух противоположных сторон основания.
Отрезок,

соединяющий центр сферы с серединой стороны основания, делит пополам двугранный угол при основании.

Решение:







Проведем сечение через вершину пирамиды и середины двух противоположных сторон основания.Отрезок, соединяющий центр сферы с серединой стороны

Слайд 46Рассмотрим треугольник, полученный в сечении, и найдем искомый радиус из тригонометрических

соотношений.

Решение:







Рассмотрим треугольник, полученный в сечении, и найдем искомый радиус из тригонометрических соотношений.Решение:

Слайд 47 Итог урока Сегодня вы познакомились с:
определением сферы, шара;
взаимным расположением

сферы и плоскости;
нахождением радиуса вписанного шара.
Итог  урока Сегодня вы познакомились с:  определением сферы, шара; взаимным расположением сферы и плоскости;

Слайд 48Заключение
На этом наш урок закончен
Спасибо за работу

Заключение На этом наш урок законченСпасибо за работу

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть