Презентация, доклад по геометрии на тему Теорема Пифагора

Содержание

Для крепления мачты нужно установить 4 троса. Один конец каждого троса должен крепиться на высоте 12 м, другой на земле на расстоянии 5 м от мачты. Хватит ли 50 м троса для крепления мачты?

Слайд 18 класс
Теорема Пифагора

8 класс Теорема Пифагора

Слайд 2Для крепления мачты нужно установить 4 троса. Один конец каждого троса

должен крепиться на высоте 12 м, другой на земле на расстоянии 5 м от мачты. Хватит ли 50 м троса для крепления мачты?
Для крепления мачты нужно установить 4 троса. Один конец каждого троса должен крепиться на высоте 12 м,

Слайд 3Древнегреческий философ и математик

(580 - 500 г. до н.э.)
Пифагор

Древнегреческий философ и математик(580 - 500 г. до н.э.)Пифагор

Слайд 4 Знаменитый древнегреческий философ и математик Пифагор Самосский родился на острове Самос,

далеко от Греции в 580
году до н. э. По античным свидетельствам он был красив и обладал незаурядными способностями. Совсем юношей он покинул родину, прошел по дорогам Египта и 12 лет жил в Вавилоне. После возвращения домой Пифагор переселился в Италию, затем в Сицилию.

Биография Пифагора.

Знаменитый древнегреческий философ и математик Пифагор Самосский родился на острове Самос, далеко от Греции в 580году

Слайд 5Основные достижения Пифагора


Учение Пифагора поспособствовало развитию
физики, математики,

географии, астрономии.

Современные исследователи считают Пифагора выдающимся античным космологом и математиком, хотя авторы древности этого не подтверждают. Пожалуй, самое известное достижение Пифагора – теорема, согласно которой квадрат гипотенузы прямоугольного треугольника равняется сумме квадратов катетов.

Согласно некоторым античным авторам, Пифагор написал целый ряд книг. Тем не менее, цитат из них не встречено.
Основные достижения ПифагораУчение Пифагора поспособствовало развитию    физики, математики, географии, астрономии.Современные исследователи считают Пифагора выдающимся

Слайд 6«Ослиный мост»
Доказательство теоремы Пифагора считалось в кругах учащихся средних веков очень

трудным и называлось иногда Pons Asinorum «ослиный мост» или elefuga - «бегство убогих», так как некоторые «убогие» ученики, не имевшие серьезной математической подготовки, бежали от геометрии.

Слабые ученики, заучивавшие теоремы наизусть, без понимания, и прозванные поэтому «ослами», были не в состоянии преодолеть теорему Пифагора, служившую для них вроде непреодолимого моста.

«Ослиный мост»Доказательство теоремы Пифагора считалось в кругах учащихся средних веков очень трудным и называлось иногда Pons Asinorum

Слайд 7






В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.



a
b
c
b
a

b
a


В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.abcbaba

Слайд 8



a


b-a
a
a
b
c
Еще один алгебраический способ доказательства теоремы.

Доказательство Бхаскара (XII в.)
ab-aaabcЕще один алгебраический способ доказательства теоремы.

Слайд 9Предполагают, что во времена Пифагора теорема звучала по-другому:

«Площадь квадрата,
построенного на
гипотенузе
прямоугольного
треугольника,
равна

сумме
площадей квадратов,
построенных на его
катетах».
Предполагают, что во времена Пифагора теорема звучала по-другому:  «Площадь квадрата,построенного нагипотенузепрямоугольноготреугольника, равна суммеплощадей квадратов,построенных на егокатетах».

Слайд 10Из-за чертежей, сопровождающих теорему Пифагора, учащиеся называли ее так же “ветряной

мельницей”, составляли стихи вроде “Пифагоровы штаны на все стороны равны”, рисовали карикатуры.

Из-за чертежей, сопровождающих теорему Пифагора, учащиеся называли ее так же “ветряной мельницей”, составляли стихи вроде “Пифагоровы штаны

Слайд 11

Для прямоугольных треугольников составить равенства, выражающие зависимость между сторонами прямоугольного треугольника,

по теореме Пифагора.



АВ2=АО2 + ОВ2

DC2 = DO2 + OC2

АD2 = DO2 + OA2

ВС2 = ВО2 + ОС2

А

В

С

D




АВСD – ромб

Для прямоугольных треугольников составить равенства, выражающие зависимость между сторонами прямоугольного треугольника, по теореме Пифагора. АВ2=АО2 + ОВ2DC2

Слайд 12

Для прямоугольных треугольников составить равенства, выражающие зависимость между сторонами прямоугольного треугольника,

по теореме Пифагора.




А

С

В

М



Р

К


МР2 + РС2 = МС2

КВ2 + КМ2 = МВ2

АР2 + РМ2 = МА2

СК2 + МК2 = МС2



Для прямоугольных треугольников составить равенства, выражающие зависимость между сторонами прямоугольного треугольника, по теореме Пифагора. АСВМРКМР2 + РС2

Слайд 13

Для прямоугольных треугольников составить равенства, выражающие зависимость между сторонами прямоугольного треугольника,

по теореме Пифагора.



АВ2=АО2 + ОВ2

DC2 = DO2 + OC2

АD2 = DO2 + OA2

ВС2 = ВО2 + ОС2

А

В

С

D




АВСD – ромб


Для прямоугольных треугольников составить равенства, выражающие зависимость между сторонами прямоугольного треугольника, по теореме Пифагора. АВ2=АО2 + ОВ2DC2

Слайд 14

Для прямоугольных треугольников составить равенства, выражающие зависимость между сторонами прямоугольного треугольника,

по теореме Пифагора.




А

С

В

М



Р

К


МР2 + РС2 = МС2

КВ2 + КМ2 = МВ2

АР2 + РМ2 = МА2

СК2 + МК2 = МС2






Для прямоугольных треугольников составить равенства, выражающие зависимость между сторонами прямоугольного треугольника, по теореме Пифагора. АСВМРКМР2 + РС2

Слайд 15х
Найдите х
Блиц-опрос
А
В
С
D
4
3


О

хНайдите х    Блиц-опросАВСD43О

Слайд 16Найдите х
В
А
5 дм
С

х

Тренировочные задания
М
3 дм
5 дм

Найдите х    ВА5 дмСхТренировочные заданияМ3 дм5 дм

Слайд 17Найдите х
В
А
С

х

Тренировочные задания
4 дм
5 дм



a
b
a

II b
Найдите х    ВАСхТренировочные задания4 дм5 дмa b a II b

Слайд 18х

А
В
С
D


АС = 6 см, ВD = 8 см.
Найдите х


Тренировочные задания

4

3


хАВСDАС = 6 см, ВD = 8 см. Найдите х    Тренировочные задания43

Слайд 19Найдите х
Блиц-опрос
D
С
F
6 дм
E


х

1350

450
6 дм

Найдите х    Блиц-опросDСF6 дмEх13504506 дм

Слайд 20Найдите х
Блиц-опрос
А
В
С


D




х

Найдите х    Блиц-опросАВС1мD1мх

Слайд 21Найдите х
Блиц-опрос
А
В
С
a

700

b
х
200

Найдите х    Блиц-опросАВСa 700b х200

Слайд 22Найдите х
В
А
К
6 дм
С


х

1350

450
Тренировочные задания

М

1350
450

Найдите х    ВАК6 дмСх1350450Тренировочные заданияМ1350450

Слайд 23

А
D1
C1
B1
А1
С
В





Для прямоугольных треугольников составить равенства, выражающие зависимость между сторонами прямоугольного треугольника,

по теореме Пифагора.

D

В1А2 = АВ2 + В1В2

В1С2 = СВ2 + В1В2

D1B2 = DВ2 + D1D2

Заглянем внутрь параллелепипеда

Прямоугольный параллелепипед АВСDА1В1С1D1

АD1C1B1А1СВДля прямоугольных треугольников составить равенства, выражающие зависимость между сторонами прямоугольного треугольника, по теореме Пифагора. DВ1А2 = АВ2

Слайд 24

4 см
6 см
A
D
B
C
АBCD - прямоугольник
Тренировочные задания
Найдите х
х
6

см


4 см6 смADBCАBCD - прямоугольникТренировочные заданияНайдите х    х6 см

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть