Презентация, доклад по геометрии на тему: Телрема Пифагора

Содержание

Старинная задачаНа обоих берегах реки растет по пальме, одна против другой. Высота одной 30 локтей, другой 20 локтей. Расстояние между их основаниями 50 локтей. На верхушке каждой пальмы сидит птица. Внезапно

Слайд 1


Слайд 2 Старинная задача
На обоих берегах реки растет

по пальме, одна против другой. Высота одной 30 локтей, другой 20 локтей. Расстояние между их основаниями 50 локтей. На верхушке каждой пальмы сидит птица. Внезапно обе птицы заметили рыбу, выплывшую к поверхности воды между пальмами. Они кинулись к ней разом и достигли ее одновременною. На каком расстоянии от более высокой пальмы появилась раба.
Старинная задачаНа обоих берегах реки растет по пальме, одна против другой. Высота

Слайд 3 Переведем задачу на математический язык
Дано: АС=30, ВД=20,

АВ=50.
Переведем задачу на математический языкДано: АС=30, ВД=20,   АВ=50.

Слайд 4Нужно знать зависимость между катетами и гипотенузой в прямоугольном треугольнике.

Эту зависимость

подметили еще в глубокой древности и доказали теорему, которую знают теперь почти все школьники. Эта теорема носит имя Пифагора.
Нужно знать зависимость между катетами и гипотенузой в прямоугольном треугольнике.Эту зависимость подметили еще в глубокой древности и

Слайд 5Биография Пифагора
Пифагор-это не имя, а прозвище, данное ему

за
то , что он высказывал истину также постоянно, как дельфийский аракул, («Пифагор» значит «убеждающий речью») жил в Древней Греции. О жизни его известно немного, зато с именем его связан ряд легенд. Рассказывают, что он много путешествовал, изучал древнюю культуру и достижения науки разных стран.


Биография Пифагора   Пифагор-это не имя, а прозвище, данное ему за   то , что

Слайд 6Пифагорейская школа
Вернувшись на родину, Пифагор

организовал кружок молодежи из
представителей аристократии. В
кружок принимались с большими
церемониями после долгих испытаний.
Каждый вступающий отрекался от
своего имущества и давал клятву
хранить в тайне учения основателя.
Так на юге Италии, которая была
тогда греческой колонией, возникла
пифагорейская школа.

Пифагорейская школа   Вернувшись на родину, Пифагор   организовал  кружок молодежи из

Слайд 7Пифагорейская школа
Пифагорейцы занимались

математикой, философией,
естественными науками.
Ими было сделано много важных открытий в арифметике и геометрии.
В школ существовал декрет, по которому авторство всех математических работ
приписывалось Пифагору.

Звездчатый пятиугольник, или пентаграмма, - пифагорейский символ здравия и тайный опознавательный знак


Пифагорейская школа     Пифагорейцы занимались   математикой, философией,   естественными науками.

Слайд 8 Заповеди Пифагора
и его учеников актуальны

и сейчас и могут быть
приемлемы для любого здравомыслящего человека.
Вот они!

Заповеди Пифагора  и его учеников актуальны и сейчас и могут быть  приемлемы

Слайд 9 Заповеди пифагорийцев

Делать то, что впоследствии не огорчит тебя

и не принудит раскаиваться;
Не делай никогда того, что не знаешь, но научись всему, что следует знать;
Не пренебрегай здоровьем своего тела;
Приучайся жить просто и без роскоши.
Заповеди пифагорийцевДелать то, что впоследствии не огорчит тебя и не принудит раскаиваться;Не делай никогда

Слайд 10 Физминутка

Физминутка

Слайд 11Построим на сторонах прямоугольного треугольника квадраты со стронами а, в,с

Построим на сторонах прямоугольного треугольника квадраты со стронами а, в,с

Слайд 12Попробуйте сформулировать

теорему!


Попробуйте сформулировать           теорему!

Слайд 13Так звучала теорема во времена Пифагора

Площадь квадрата построенного на гипотенузе прямоугольного

треугольника равна сумме площадей квадратов, построенных на его катетах.
Так звучала теорема во времена ПифагораПлощадь квадрата построенного на гипотенузе прямоугольного треугольника равна сумме площадей квадратов, построенных

Слайд 14А так звучит современная формулировка:

В прямоугольном треугольнике квадрат гипотенузы равен

сумме квадратов катетов.
А так звучит современная формулировка: В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Слайд 151 ученик. Квадраты построенные на катетах, состоят из 2-х одинаковых треугольников.

А квадрат, построенный на гипотенузе состоит из 4-х такаих треугольников
1 ученик. Квадраты построенные на катетах, состоят из 2-х одинаковых треугольников. А квадрат, построенный на гипотенузе состоит

Слайд 162-й ученик. Еслизакрасить 4 треугольника на одном рисунке, то останется квадрат

площадью с2, а если закрасить такие же 4 треугольника на втором рисунке, то останутся квадраты площадью a2 и b2

Вот и получится с2 = a2 + b2

2-й ученик. Еслизакрасить 4 треугольника на одном рисунке, то останется квадрат площадью с2, а если закрасить такие

Слайд 17 3-й ученик
Я использовал этот же прием, но по-другому. Поставил рядом

квадраты площадью a2 и b2. Теперь отрежем от них два одинаковых треугольника с катетами a и b и гипотенузой с, и переложим так, как показано на рисунке. Получим квадрат площадью с2 . Значит, опять получается, что a2+b2=c2.
3-й ученикЯ использовал этот же прием, но по-другому. Поставил рядом квадраты площадью a2 и b2. Теперь

Слайд 194 ученик. А я не смог сделать неочевидное очевидным, но я

доказал теорему, используя уже известные, ранее доказанные факты.


Дано: ΔАВС – прямоугольный. Угол с-прямой;
АС=в, АВ=с, ВС=а.
Доказать: а2+в2=с2.

4 ученик. А я не смог сделать неочевидное очевидным, но я доказал теорему, используя уже известные, ранее

Слайд 20В чем достоинство этого способа доказательства?
Этот способ доступен пониманию каждого, кто

занимается геометрией. Для того, чтобы его освоить, не надо обладать воображением или еще какими-то особенными способностями.
В чем достоинство этого способа доказательства?Этот способ доступен пониманию каждого, кто занимается геометрией. Для того, чтобы его

Слайд 21А сейчас вернемся к нашей задаче
На обоих берегах реки растет по

пальме, одна против другой. Высота одной 30 локтей, другой 20 локтей. Расстояние между их основаниями 50 локтей. На верхушке каждой пальмы сидит птица. Внезапно обе птицы заметили рыбу, выплывшую к поверхности воды между пальмами. Они кинулись к ней разом и достигли ее одновременною. На каком расстоянии от более высокой пальмы появилась раба.
А сейчас вернемся к нашей задачеНа обоих берегах реки растет по пальме, одна против другой. Высота одной

Слайд 22Дано: АС=30, ВД=20, АВ=50.

Дано: АС=30, ВД=20,   АВ=50.

Слайд 23Рассмотрим еще одну задачу, для решения которой нам необходимо знать теорему

Пифагора.

Над озером тихим,
С полфута размером,
Высился лотоса цвет.
Он рос одиноко. И ветер порывом
Отнес его в сторону.
Нет боле цветка над водой.
Нашел же рыбак его ранней весной
В двух футах от места, где рос.
Итак, предложу я вопрос:
Как озера вода глубока?

Рассмотрим еще одну задачу, для решения которой нам необходимо знать теорему Пифагора.   Над озером тихим,

Слайд 24 Решение

СД – глубина озера СД – Х, СВ=2 фута
АД=ВД=Х+0,5 Треугольник ВСД прямоуг.
ВД2-ВС2=СД2
Х2=(Х+0,5)2 - 22
Х2=Х2+Х+0,25-4
Х=3,75 футов

Ответ: 3,75 футов
Решение   СД – глубина озера

Слайд 25 Итог.

1.

Возможно было решение задач данного типа без знания теоремы Пифагора? Почему?
2. В чем суть теоремы Пифагора?
3. О чем надо помнить, применяя теорему Пифагора?
Итог.1. Возможно было решение задач данного типа

Слайд 264. Древние египтяне для построения прямоугольных треугольников пользовались веревкой с завязанными

на ней на одинаковых расстояниях узелками. По одной стороне они откладывали 3 отрезка, на другой 4, а на третьей 5.
Правильно ли они поступали?

4. Древние египтяне для построения прямоугольных треугольников пользовались веревкой с завязанными на ней на одинаковых расстояниях узелками.

Слайд 27 Треугольник со сторонами 3, 4, 5 теперь мы называем

египетским.
Треугольник со сторонами 3, 4, 5 теперь  мы называем египетским.

Слайд 28Вам, наверное, известны также детские стишки о пифагоровых штанах. Данный рисунок

подтверждает их содержание.

Пифагоровы штаны
Во все стороны равны.

Вам, наверное, известны также детские стишки о пифагоровых штанах. Данный рисунок подтверждает их содержание.Пифагоровы штаныВо все стороны

Слайд 29 До нас дошли и другие шуточные рисунки к теореме


До нас дошли и другие шуточные рисунки к теореме

Слайд 30
Если дан нам треугольник И притом с прямым углом, То квадрат гипотенузы Мы всегда

легко найдём: Катеты в квадрат возводим, Сумму степеней находим И таким простым путём К результату мы придём.
Если дан нам треугольник И притом с прямым углом, То квадрат гипотенузы Мы всегда легко найдём: Катеты

Слайд 31 Спасибо за урок!

Спасибо за урок!

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть