Презентация, доклад по геометрии на тему Параллельность плоскостей (10 класс)

ОпределениеДве плоскости называются параллельными, если они не пересекаютсяαβα ‖ β

Слайд 1Параллельность плоскостей


Параллельность плоскостей

Слайд 2Определение
Две плоскости называются параллельными, если они не пересекаются


α
β
α ‖ β

ОпределениеДве плоскости называются параллельными, если они не пересекаютсяαβα ‖ β

Слайд 3

α ‖ β
α ⋂ β
Взаимное расположение плоскостей

α ‖ βα ⋂ βВзаимное расположение плоскостей

Слайд 4


Признак параллельности плоскостей
a
b
α
b1
a1
β
Дано: α; β;
a⊂α; a1⊂ β; a ||

a1;
b⊂α, b1⊂ β; b || b1;
a ⋂ b = M.

Доказать: α || β

М

с

Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны


Признак параллельности плоскостейabα b1a1βДано: α; β; a⊂α; a1⊂ β; a || a1;b⊂α, b1⊂ β; b || b1;

Слайд 5Дано: α, β, γ, α ‖ β
γ ⋂ α = a,

γ ⋂ β = b

Доказать: a || b

Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны

1 свойство параллельных плоскостей

Дано: α, β, γ, α ‖ βγ ⋂ α = a, γ ⋂ β = bДоказать: a

Слайд 6Дано: α; β; γ;
α ‖ β; γ ⋂ α = AC;


γ ⋂ β = BD; AB ‖ CD.

Доказать: AB = CD

Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны

2 свойство параллельных плоскостей

Дано: α; β; γ;α ‖ β; γ ⋂ α = AC; γ ⋂ β = BD; AB

Слайд 7Задача №54
Дано: ∆ ADC;
B∉(ADC);
AM=MB; CN=NB;
DP=PB; S∆ADC = 48 см2
а) Доказать:


(MNP) ‖ (ADC)
б) Найти: S∆MNP
Задача №54Дано: ∆ ADC;B∉(ADC); AM=MB; CN=NB;DP=PB; S∆ADC = 48 см2а) Доказать: (MNP) ‖ (ADC) б) Найти: S∆MNP

Слайд 8Задача №63
Дано: α, β; α ‖ β;
∠BAC; AB ⋂ α =

A1; AB ⋂ β = A2;
AC ⋂ α = B1; AC ⋂ β = B2;

Найти:
а) AA2 и AB2;
б) A2B2 и AA2.

а) A1A2=2A1A; A1A2=12см; AB1=5см;
б) A1B1=18см; AA1=24см; AA2=1,5A1A2.

Задача №63Дано: α, β; α ‖ β;∠BAC; AB ⋂ α = A1; AB ⋂ β = A2;AC

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть