«Треугольники»
Учитель Старостина Т.Д.
2016 год
Урок геометрии по теме
С
А
D
B
Медиана делит треугольник на два треугольника с равными площадями.
Биссектриса делит площадь треугольника, пропорционально прилежащим сторонам
Каждая из высот является одновременно биссектрисой и медианой.
Центры описанной и вписанной окружностей совпадают.
Радиусы окружностей:
Площадь
Прямоугольный треугольник
а= с sin A= b tg A
b= c cos A= a ctg A
Катеты:
b
ac – проекция катета a
a
bc
h
Основные соотношения в треугольнике
Средняя линия отсекает подобный треугольник, площадь которого равна одной четверти от исходного.
6) Высота равнобедренного треугольника является медианой и биссектрисой.
7) Площадь треугольника равна произведению основания на высоту, проведенную к основанию.
8) Высота –это перпендикуляр, опущенный из угла треугольника на противолежащую сторону.
9) Ели биссектриса делит угол треугольника на два угла по 25 градусов, то угол треугольника равен 50 градусов.
10) Если отрезки равны 5см, 7см и 12 см, то на них невозможно построить треугольник.
Ответ: да – 1; 2; 4; 6; 8; 9; 10.
Ответ: нет – 3; 5; 7.
6) Квадрат гипотенузы равен сумме квадратов катетов.
7) Площадь треугольника равна произведению основания на высоту, проведенную к основанию.
8) Против большей стороны треугольника лежит больший угол.
9) Сумма углов треугольника равна 180 градусов.
10) Если отрезки равны 5см, 7см и 12 см, то на них невозможно построить треугольник.
Ответ: да – 1;2; 6; 8; 9; 10.
Ответ: нет – 1; 3; 4; 5; 7.
6) Квадрат гипотенузы равен сумме квадратов катетов.
7) Площадь треугольника равна произведению основания на высоту, проведенную к основанию.
8)Если угол, вписанного в окружность треугольника, равен 50 градусов, то дуга, на которую он опирается, равна 100 градусов.
9) Сумма углов треугольника равна 180 градусов.
10) Если отрезки равны 5см, 7см и 12 см, то на них невозможно построить треугольник.
Ответ: да – 2; 5; 6; 8; 9; 10.
Ответ: нет – 1; 3; 4; 7.
Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.
Email: Нажмите что бы посмотреть