∠1 = ∠2, ∠3 = ∠4
ВС = AD, АВ = СD
А
В
С
D
Дано: АВСD - параллелограмм
Доказательство: рассмотрим ∆ АВС и ∆ADC,
AC - общая,
1
2
3
4
АВ = СD, BC = AD
О – точка пересечения диагоналей
Доказать: ВО = ОD, АО = ОС
Доказательство:
рассмотрим ∆ АОВ и ∆СОD,
Следовательно: АО = ОС, ВО = ОD
O
АВ = СD (противоположные стороны параллелограмма,
2
∠D + ∠C = 180° ,
∠А + ∠B = 180° ,
∠В + ∠C = 180°
АВСD – четырехугольник,
АВ = CD, АВ ∥ CD
АВСD – параллелограмм
Доказательство
∆ АBC = ∆ACD – по двум сторонам и углу между ними
(АС – общая, АВ = СD – по условию, ∠1 = ∠ 2 как накрест лежащие при АВ ∥ СD и секущей АС.
Поэтому ∠3 = ∠ 4.
1
2
3
4
Но ∠3 и ∠ 4 – накрест лежащие углы при пересечении прямых
ВС и AD секущей – АС. Следовательно ВС∥ AD.
Таким образом, если в четырехугольнике противоположные
стороны параллельны, то этот четырехугольник АВСD -
параллелограмм.
АВСD – четырехугольник,
АВ = CD, ВС = АD
АВСD – параллелограмм
Доказательство
∆ АBC = ∆ACD – по трем сторонам
(АС – общая, АВ = СD, ВС = АD – по условию).
Поэтому ∠1 = ∠ 2 как накрест лежащие при секущей АС.
Отсюда следует, что АВ ∥ СD.
Проведем диагональ АС.
Так как АВ ∥ СD и АВ = СD, то по признаку 1 четырехугольник АВСD – параллелограмм (если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник параллелограмм).
АВСD – четырехугольник,
ВО = ОD, АО = ОС
АВСD – параллелограмм
Доказательство
Рассмотрим треугольники
∆ АОB и ∆CОD:
∆ АОB = ∆CОD – по первому признаку равенства треугольников
(ВО = ОD, АО = ОС – по условию, ∠ АОB = ∠ CОD – как вертикаль.)
Поэтому АВ = CD и ∠1 = ∠2.
Из ∠1 = ∠2 следует, что АВ ∥ CD.
Так как в четырехугольнике АВСD стороны АВ = CD и АВ ∥ CD, то по 1 признаку четырехугольник АВСD – параллелограмм (если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник параллелограмм).
1. ∠BАC = ∠ACD, ∠CAD =∠BCA – по
условию, АС – общая;
следовательно ∆ АBC = ∆ACD – по
стороне и двум прилежащим углам;
поэтому ВС = AD.
2.Так как ∠BАC = ∠ACD – накрест лежащие углы при
параллельных прямых ВС, AD и секущей - АС, то ВС ∥ AD.
3.Так как ВС = AD и ВС ∥ AD, то по 1-му признаку параллелограмма АВСD – параллелограмм, что и требовалось доказать.
Задача
Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.
Email: Нажмите что бы посмотреть