Презентация, доклад 8 класс Замечательные точки треугольника

Исторически геометрия начиналась с треугольника, поэтому вот уже два с половиной тысячелетия треугольник является символом геометрии. Удивительно, но треугольник, несмотря на свою кажущуюся простоту, является неисчерпаемым объектом изучения - никто даже в наше время не осмелится

Слайд 1Цели урока:
Рассмотреть теорему о свойстве биссектрисы угла и её следствие.

Учить применять данные теоремы и следствие при решении задач.

Цели урока: Рассмотреть теорему о свойстве биссектрисы угла и её следствие. Учить применять данные теоремы и следствие

Слайд 2
Исторически геометрия начиналась с треугольника, поэтому вот уже два с половиной

тысячелетия треугольник является символом геометрии.
Удивительно, но треугольник, несмотря на свою кажущуюся простоту, является неисчерпаемым объектом изучения - никто даже в наше время не осмелится сказать, что изучил и знает все свойства треугольника.

Исторически геометрия начиналась с треугольника, поэтому вот уже два с половиной тысячелетия треугольник является символом геометрии. Удивительно,

Слайд 3

C каждым треугольником связаны четыре точки:
 
• точка пересечения медиан;

точка пересечения биссектрис;
• точка пересечения серединных перпендикуляров;
• точка пересечения высот.
 
Эти четыре точки называют замечательными точками треугольника.
Почему они «Замечательные»?
Это нам и предстоит узнать.
C каждым треугольником связаны четыре точки:  • точка пересечения медиан; • точка пересечения биссектрис; • точка пересечения

Слайд 4Свойство биссектрисы
Каждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон.

Обратно:

Каждая точка,

лежащая внутри угла и равноудалённая от сторон угла, лежит на его биссектрисе.
Свойство биссектрисыКаждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон.Обратно:Каждая точка, лежащая внутри угла и равноудалённая от

Слайд 5Дано:

MK=ML.

Доказательство:
1.Возьмём т. МЄAD.
2. Из т. М проведём МК и ML перпендикулярно AB и AC.
3. Рассмотрим Δ AKM и
Δ AML.
4. Δ AKM = Δ AML,

MK=ML

?

А

2

1

Дано:

Слайд 6Следствие: Биссектрисы треугольника пересекаются в одной точке.
1. Построим биссектрисы АА₁,

BB₁, CC₁.
2. Обозначим точку O – точку пересечения биссектрис.
3. Проведём OK, OL и OM-перпендикуляры к сторонам Δ ABC
4. По теореме: OK=OM=OL
т. О Є СС₁
Следовательно,
все биссектрисы треугольника пересекаются в одной точке.

O

Следствие:  Биссектрисы треугольника пересекаются в одной точке. 1. Построим биссектрисы АА₁, BB₁, CC₁. 2. Обозначим точку

Слайд 7 № 676 б. Cтороны угла А, равного 90°, касаются окружности с

центром О и радиусом r, ОА = 14 дм. Найдите: r.

Решение:
Проведём радиусы OP и OH из центра окружности в точки касания.
OP AP, OH AH

3. AO – биссектриса угла
4. Δ AOP – прямоугольный.
По теореме Пифагора:
AO²=OP²+AP²
AO²=r²+r²,
2r²=14², r=7√2.
Ответ: r=7√2дм.

№ 676 б.  Cтороны угла А, равного 90°, касаются окружности с центром О и радиусом

Слайд 8№678 а – дополнительно.
Оформить и решить самостоятельно.

Ответ: 46˚

№678 а – дополнительно.Оформить и решить самостоятельно.Ответ: 46˚

Слайд 9Использованные ресурсы:

1. Учебник «Геометрия 7-9»; авт: Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина.

М., Просвещение, 2007г. 2. Рисунки треугольников:
http://www.google.ru/search?q=%D0%BA%D0%B0%D1%80%D1%82%D0%B8%D0%BD%D0%BA%D0%B8+%D1%82%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA%D0%B0&hl=ru&newwindow=1&prmd=imvns&tbm=isch&tbo=u&source=univ&sa=X&ei=_j5CT9zvLK_Q4QSShuyACA&ved=0CCIQsAQ&biw=1247&bih=864.
Использованные ресурсы:1. Учебник «Геометрия 7-9»; авт: Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина. М., Просвещение, 2007г. 2. Рисунки треугольников:http://www.google.ru/search?q=%D0%BA%D0%B0%D1%80%D1%82%D0%B8%D0%BD%D0%BA%D0%B8+%D1%82%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA%D0%B0&hl=ru&newwindow=1&prmd=imvns&tbm=isch&tbo=u&source=univ&sa=X&ei=_j5CT9zvLK_Q4QSShuyACA&ved=0CCIQsAQ&biw=1247&bih=864.

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть