Слайд 1Государственное бюджетное профессиональное
образовательное учреждение Ростовской области
«Волгодонский педагогический колледж»
История
возникновения и развития геометрии
Выполнили студентки группы ПНК-2:
Силантьева К.
Слайд 2Геометрия возникла очень давно, это одна из самых древних наук. Геометрия
(греческое, от ge — земля и metrein — измерять)— наука о пространстве, точнее — наука о формах, размерах и границах тех частей пространства, которые в нем занимают вещественные тела.
Слайд 3Первый период
Зарождения геометрия как математической науки - протекал в Древнем Египте,
Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае - зависимостей между геометрическими величинами.
Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве. Этот процесс привёл, наконец, к качественному скачку. Геометрия превратилась в самостоятельную математическую науку: появились систематические её изложения, где её предложения последовательно доказывались.
Слайд 4Геометрия Египта
Имеются вполне достоверные сведения о значительном развитии геометрических знаний в
Египте более чем за две тысячи лет до нашей эры. Узкая плодородная полоса земли между пустыней и рекой Нилом ежегодно подвергалась затоплению, и каждый раз разлив смывал границы участков, принадлежавших отдельным лицам. После спада воды требовалось с возможно большей точностью восстановить эти границы, ибо каждый из участков ценился весьма высоко. Это заставило египтян заниматься вопросами измерения, то есть землемерием. Искусство кораблевождения привело их к астрономическим сведениям. Выдающиеся постройки египтян - пирамиды, которые сохранились до нашего времени, свидетельствуют, что их сооружение требовало знания пространственных форм. Все это указывает на чисто опытное происхождение геометрии.
Слайд 5Геометрия Вавилона
К задачам, которые вавилоняне решали алгебраическим и арифметическим методом, относятся
и многие задания на определение длин, площадей при делении земельных участков, объемов земляных выемок, хозяйственных построек. Все решения, встречающиеся в клинописных текстах, ограничиваются простым перечислением этапов вычисления в виде догматических правил: "делай то - то, делай так - то". В дошедших до нас вавилонских табличках имеются задачи абстрактного характера и внешне кажущиеся не связанными с практическими нуждами. Но это не так: они возникли в результате теоретической обработки условий, первоначально порожденных потребностями практики при межевании земель, возведении стен и насыпей, при строительстве каналов, плотин, оборонительных сооружений и пр. Сохранилось немало планов земельных угодий, разделенных на участки прямоугольной, трапецеидальной или треугольной форм. Но соответствующие геометрические фигуры воспринимались ими как абстрактные, так прямоугольник они называли "то, что имеет длину и ширину", трапецию - "лбом быка", сегмент - "полем полумесяца", параллельные прямые - "двойными прямыми". У вавилонян не было таких геометрических понятий как точка, прямая, линия, поверхность, плоскость, параллельность. Измерение производилось при помощи веревки. Геометрические познания вавилонян превышали египетские.
Слайд 6Геометрия древней Греции
Греческие купцы познакомились с восточной математикой, прокладывая торговые пути.
Но люди Востока почти не занимались теорией, и греки быстро это обнаружили. Они задавались вопросами: почему в равнобедренном треугольнике два угла при основании равны; почему площадь треугольника равна половине площади прямоугольника при одинаковых основаниях и высотах? Только благодаря восстановленным текстам четвертого столетия до нашей эры и трудам арабских ученых, которые были богаты переводами сочинений авторов античной Греции, мы располагаем изданиями Евклида, Архимеда, Аполлония и других великий людей.
Историки науки выделяют три периода ее развития в соответствии с характером знаний:
1 - Накопление отдельных математических фактов и проблем (6 - 5B.B. до н.э.).
2 - Систематизация полученных знаний (4 - 3 в.в. до н.э.).
3 - Период вычислительной математики (3в. до н.э. - 6 в.).
Необыкновенный расцвет науки и культуры был тесно связан с общим подъемом греческого производства 6 - 4 в.в. до н.э., жизненными потребностями людей.
Слайд 7Второй период
Известны упоминания систематические изложения геометрии, среди которых данное в 5
в. до н. э. Гиппократом Хиосским. Сохранились же и сыграли в дальнейшем решающую роль появившиеся около 300 до н. э. "Начала" Евклида. Упадок античного общества привёл к сравнительному застою в развитии геометрии, однако она продолжала развиваться в Индии, в Средней Азии, в странах арабского Востока.
Возрождение наук и искусств в Европе повлекло дальнейший расцвет геометрии. Принципиально новый шаг был сделан в 1-й половине 17 в. Р. Декартом, который ввёл в геометрию метод координат. Метод координат позволил связать геометрия с развивавшейся тогда алгеброй и зарождающимся анализом. Применение методов этих наук в геометрию породило аналитическую геометрию, а потом и дифференциальную.
Слайд 8Труды Евклида
Для геометрии эпохи эллинизма характерен интерес к построению логически завершенных
теорий . Наиболее ярко эта тенденция отразилась в творчестве Евклида Александрийского (III в. до н.э.).
В III в. до н.э. древнегреческий ученый Евклид написал книгу под названием "Начала". В ней он подытожил накопленные к тому времени геометрические знания и попытался дать законченное аксиоматическое изложение этой науки. Написана она была настолько хорошо, что в течение 2000 лет преподавание геометрии велось либо по переводам, либо по незначительным переработкам книги Евклида.
Евклиду приписывается несколько теорем и новых доказательств, но их значимость не может быть сравнима с достижениями великих греческих геометров: Фалеса и Пифагора (VI в. до н.э.), Евдокса и Теэтета (IV в. до н.э.). Величайшая заслуга Евклида состоит в том, что он подвел итог построению геометрии и придал ей завершенную форму.
Он с величайшим искусством расположил материал по 13 книгам так, чтобы трудности не возникали преждевременно. Главная особенность "Начал" состоит в том, что они построены по единой логической схеме, и все содержащиеся в них теории строго обоснованы по принципу построения научных дисциплин, который намечался еще у Аристотеля.
Слайд 9Труды Архимеда
Архимеду принадлежит формула для определения площади треугольника через три его
стороны (неправильно именуемая формулой Герона). Архимед дал (не вполне исчерпывающую) теорию полуправильных выпуклых многогранников (архимедовы тела). Особое значение имеет «аксиома Архимеда»: из неравных отрезков меньший, будучи повторен достаточное число раз, превзойдет больший. Эта аксиома определяет т. н. архимедовскую упорядоченность, которая играет важную роль в современной математике. Архимед построил счисление, позволяющее записывать и называть весьма большие числа. Он с большой точностью вычислил значение числа и указал пределы погрешности.
Слайд 10Труды Менелая
Менелаем были написаны два сочинения: "О вычислении хорд", в 6
книгах, и "Сферика", в 3 книгах. Из них первое совсем не дошло до нас. Утрачен также и греческий оригинал второго, содержание которого известно современной науке по его латинским переводам, составленным по взаимно подтверждающим друг друга арабским и еврейским переводам того же сочинения. Главным предметом "Сферики" Менелая. служит сферическая тригонометрия. Из числа многих предложений, для нас впервые встречающихся в этом сочинении, самым замечательным считается обыкновенно теорема Менелая., которая прежде называлась правилом шести количеств (regula sex quantitatum). Содержание ее состоит в следующем. Если все стороны треугольника пересечь прямой, то произведение их трех отрезков, из числа не имеющих общих концов, равно произведению таких же трех остальных отрезков.
Слайд 11Труды Аполлона Пергского
АПОЛЛОНИЙ ПЕРГСКИЙ (ок. 260 — 170 до н. э.),
древнегреческий математика и астроном, ученик Евклида. В основном труде «Конические сечения» (8 книг) дал полное изложение их теории. Для объяснения видимого движения планет построил теорию эпициклов. Идеи Аполлона Пергского оказали большое влияние на развитие естествознания нового времени. Гипербола является коническим сечением. Она может быть получена, если секущая плоскость пересекает обе полости конической поверхности, не проходя через вершину.
Слайд 12Третий период
Аналитическая геометрия изучает фигуры и преобразования, задаваемые алгебраическими уравнениями в
прямоугольных координатах, используя при этом методы алгебры. Дифференциальная геометрия, возникшая в 18 в. в результате работ Л. Эйлера, геометрия Монжа и др., исследует уже любые достаточно гладкие кривые линии и поверхности, их семейства (т. е. их непрерывные совокупности) и преобразования. Её название связано в основном с её методом, исходящим из дифференциального исчисления. К 1-й половине 17 в. относится зарождение проективной геометрии в работах Ж. Дезарга и Б. Паскаля. Она возникла из задач изображения тел на плоскости; её первый предмет составляют те свойства плоских фигур, которые сохраняются при проектировании с одной плоскости на другую из любой точки. Окончательное оформление и систематическое изложение этих новых направлений геометрии были даны в 18 - начале 19 вв. Эйлером для аналитической геометрии (1748), Монжем для дифференциальной геометрия (1795), Ж. Понселе для проективной геометрии (1822), причём само учение о геометрическом изображении (в прямой связи с задачами черчения) было ещё раньше (1799) развито и приведено в систему Монжем в виде начертательной геометрии. Во всех этих новых дисциплинах основы (аксиомы, исходные понятия) геометрии оставались неизменными, круг же изучаемых фигур и их свойств, а также применяемых методов расширялся.
Слайд 13Труды Эйлера
В элементарной геометрии Эйлер обнаружил несколько фактов, не замеченных Евклидом:
Три
высоты треугольника пересекаются в одной точке (ортоцентре).
В треугольнике ортоцентр, центр описанной окружности и центр тяжести лежат на одной прямой — «прямой Эйлера».
Основания трёх высот произвольного треугольника, середины трёх его сторон и середины трёх отрезков, соединяющих его вершины с ортоцентром, лежат все на одной окружности (окружности Эйлера).
Число вершин (В), граней (Г) и рёбер (Р) у любого выпуклого многогранника связаны простой формулой: В + Г = Р + 2.
Второй том «Введения в анализ бесконечно малых» (1748) — это первый в мире учебник по аналитической геометрии и основам дифференциальной геометрии. Термин аффинные преобразования впервые введён в этой книге вместе с теорией таких преобразований.
В 1760 году вышли фундаментальные «Исследования о кривизне поверхностей». Эйлер обнаружил, что в каждой точке гладкой поверхности имеются два нормальных сечения с минимальным и максимальным радиусами кривизны, и плоскости их взаимно перпендикулярны.
1771 год: опубликовано сочинение «О телах, поверхность которых можно развернуть на плоскость».
Слайд 14Четвёртый период
Четвёртый период в развитии геометрия открывается построением Н. И. Лобачевским в
1826 новой, неевклидовой геометрия , называемой теперь Лобачевского геометрией. Лобачевский рассматривал свою геометрию как возможную теорию пространственных отношений; однако она оставалась гипотетической, пока не был выяснен (в 1868) её реальный смысл и тем самым было дано её полное обоснование.
Первый принцип заключается в том, что логически мыслима не одна евклидова геометрия , но и другие "геометрии".
Второй принцип - это принцип самого построения новых геометрических теорий путём видоизменения и обобщения основных положений евклидовой геометрии.
Третий принцип состоит в том, что истинность геометрической теории, в смысле соответствия реальным свойствам пространства, может быть проверена лишь физическим исследованием и не исключено, что такие исследования установят, в этом смысле, неточность евклидовой геометрии. Современная физика подтвердила это. Однако от этого не теряется математическая точность евклидовой геометрии, т.к. она определяется логической состоятельностью (непротиворечивостью) этой геометрии.
Слайд 15
Наука геометрия очень важна для человека. Геометрия развивалась за несколько столетий
до нашей эры в Вавилоне, Китае, Египте и Греции. Большой вклад в развитие геометрии внесли известные учёные: Евклид и его книга под названием «Начала», Архимед, которому принадлежит формула для определения площади треугольника через три его стороны, Менелай, которым были написаны два сочинения «О вычислении хорд» в 6 книгах и «Сферика» в 3 книгах. Наука геометрия и сейчас развивается. Мы легко решаем задачи, для которых в древности потребовалось бы много времени и сил.
Заключение