Вписанная окружность
Если все стороны многоугольника касаются окружности, то такая окружность называется вписанной в многоугольник. А многоугольника в этом случае называется описанным около окружности.
Если окружность вписана в треугольник,
то треугольник описан около окружности.
Заметим АMO= АKO, по гипотенузе и острому углу: AO – общая, МАО=КАО, т.к. АО-биссектриса, АМО=АКО=90°.
Это значит, что OK=OM, аналогично можно доказать, что ОК=OL. Итак, окружность проходит через точки K, L, M, а стороны треугольника касаются окружности в точках K, L, M.
Значит, окружность с центром О радиуса ОК является вписанной в DАВС.
Решение:
АВ = АМ + ВМ = 6 + 4 = 10(см)
По теореме Пифагора: АС2 + ВС2 = АВ2
,
АС= 6+ r, ВС = 4 + r
(6 + r)2 + (4 + r)2 = 102
Решив квадратное уравнение, получим r = 2 см
Ответ: 2 см
Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.
Email: Нажмите что бы посмотреть