рекомендации Гюйгенса становится профессором математики в Гронингене.
1696: Лопиталь выпускает в Париже под своим именем первый в истории учебник по математическому анализу: «Анализ бесконечно малых для исследования кривых линий» (на французском языке), в основу которого была положена первая часть конспекта Бернулли.
Значение этой книги для распространения нового учения трудно переоценить — не только потому, что она была первой, но и благодаря ясному изложению, прекрасному слогу, обилию примеров. Как и конспект Бернулли, учебник Лопиталя содержал множество приложений; собственно, они занимали львиную долю книги — 95 %.
Практически весь изложенный Лопиталем материал был почерпнут из работ Лейбница и Иоганна Бернулли (авторство которых в общей форме было признано в предисловии). Кое-что, впрочем, Лопиталь добавил и из своих собственных находок в области решения дифференциальных уравнений.
Объяснение этой необычной ситуации — в материальных затруднениях Иоганна после женитьбы. Двумя годами ранее, в письме от 17 марта 1694 г. Лопиталь предложил Иоганну ежегодную пенсию в 300 ливров, с обещанием затем её повысить, при условии, что Иоганн возьмет на себя разработку интересующих его вопросов и будет сообщать ему, и только ему, свои новые открытия, а также никому не пошлёт копии своих сочинений, оставленных в своё время у Лопиталя.
Этот тайный контракт пунктуально соблюдался два года, до издания книги Лопиталя. Позднее Иоганн Бернулли — сначала в письмах к друзьям, а после смерти Лопиталя (1704) и в печати — стал защищать свои авторские права.
Книга Бернулли — Лопиталя имела оглушительный успех у самой широкой публики, выдержала четыре издания (последнее — в 1781 году), обросла комментариями, была даже (1730) переведена на английский, с заменой терминологии на ньютоновскую (дифференциалов на флюксии и т. п.). В Англии первый общий учебник по анализу вышел только в 1706 г. (Диттон).
1696: Иоганн публикует задачу о брахистохроне: найти форму кривой, по которой материальная точка быстрее всего скатится из одной заданной точки в другую. Ещё Галилей размышлял на эту тему, но ошибочно полагал, что брахистохрона — дуга окружности.
Это была первая в истории вариационная задача динамики, и математики с ней блестяще справились. Иоганн сформулировал задачу в письме Лейбницу, который тотчас её решил и посоветовал выставить на конкурс. Тогда Иоганн
Биография (продолжение)