Презентация, доклад по теме Вычисление неопределенного интеграла

Содержание

ВЫЧИСЛЕНИЕ НЕОПРЕДЕЛЁННОГО ИНТЕГРАЛАТЕМА УРОКА

Слайд 1ПРЕЗЕНТАЦИЯ К УРОКУ МАТЕМАТИКИ ДЛЯ СТУДЕНТОВ 2 КУРСА 
СПЕЦИАЛЬНОСТЬ СПО 40.02.01 «Право

и организация социального обеспечения»

Презентацию подготовил:
преподаватель ПРИХОДЬКО Ю.В. 

ПРЕЗЕНТАЦИЯ К УРОКУ МАТЕМАТИКИ ДЛЯ СТУДЕНТОВ 2 КУРСА СПЕЦИАЛЬНОСТЬ СПО 40.02.01 «Право и организация социального обеспечения»Презентацию подготовил: преподаватель

Слайд 2 ВЫЧИСЛЕНИЕ НЕОПРЕДЕЛЁННОГО ИНТЕГРАЛА
ТЕМА УРОКА

ВЫЧИСЛЕНИЕ НЕОПРЕДЕЛЁННОГО ИНТЕГРАЛАТЕМА УРОКА

Слайд 3КОНФУЦИЙ – древнекитайский философ и мыслитель
«Три пути ведут к знанию: путь

размышления – это путь самый благородный, путь подражания – это путь самый лёгкий и путь опыта – это путь самый горький».
КОНФУЦИЙ – древнекитайский философ и мыслитель«Три пути ведут к знанию: путь размышления – это путь самый благородный,

Слайд 4Цели урока :
Обобщить и закрепить понятие неопределённого интеграла.
Повторить основные свойства интеграла.
Отработать

практические навыки вычисления неопределённого интеграла, используя различные приёмы.

Цели урока :Обобщить и закрепить понятие неопределённого интеграла.Повторить основные свойства интеграла.Отработать практические навыки вычисления неопределённого интеграла, используя

Слайд 5Организационный этап.
Из истории неопределённого интеграла.
Фронтальный опрос по теории.
Работа по карточкам.
Математическая эстафета.
Закрепление

умений и навыков. Решение примеров по образцу.
Применение умений и навыков. Выполнение практической работы.
Проверка знаний. Самостоятельная работа.
Домашнее задание.
Рефлексия деятельности.
Подведение итогов урока.

План учебного занятия:

Организационный этап.Из истории неопределённого интеграла.Фронтальный опрос по теории.Работа по карточкам.Математическая эстафета.Закрепление умений и навыков. Решение примеров по

Слайд 6Презентация по математике
ИСТОРИЯ ВОЗНИКНОВЕНИЯ ИНТЕГРАЛА

Выполнили: студенты гр. ДЛC-401
Рожковская Cветлана, Репицкая Лилия
Проверил:

преподаватель
Приходько Ю.В.
Презентация по математикеИСТОРИЯ ВОЗНИКНОВЕНИЯ ИНТЕГРАЛАВыполнили: студенты гр. ДЛC-401Рожковская Cветлана, Репицкая ЛилияПроверил: преподавательПриходько Ю.В.

Слайд 7Определение
Интеграл функции — аналог суммы последовательности. Неформально говоря, (определённый) интеграл является площадью части графика

функции (в пределах интегрирования), то есть площадью криволинейной трапеции.
Процесс нахождения интеграла называется интегрированием.
Определение		Интеграл функции — аналог суммы последовательности. Неформально говоря, (определённый) интеграл является площадью части графика функции (в пределах интегрирования), то есть

Слайд 8 Символ интеграла был введён Лейбницем (1675 г.). Этот знак является изменением

латинской буквы S (первой буквы слова сумма). Само слово интеграл придумал Я. Бернулли (1690 г.). Вероятно, оно происходит от латинского integero, которое переводится, как приводить в прежнее состояние, восстанавливать. 
Символ интеграла был введён Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова

Слайд 9Интеграл в древности
Возникновение задач интегрального исчисления связано с нахождением площадей и

объемов. Ряд задач такого рода был решен математиками древней Греции. Античная математика предвосхитила идеи интегрального исчисления в значительно большей степени, чем дифференциального исчисления. Большую роль при решении таких задач играл исчерпывающий метод, созданный Евдоксом Книдским (ок. 408 - ок. 355 до н. э.) и широко применявшийся Архимедом (ок. 287 - 212 до н. э.).
Интеграл в древности		Возникновение задач интегрального исчисления связано с нахождением площадей и объемов. Ряд задач такого рода был

Слайд 10Интеграл в древности
Однако Архимед не выделил общего содержания интеграционных приемов и

понятий об интеграле, а тем более не создал алгоритма интегрального исчисления. Ученые Среднего и Ближнего Востока в IX - XV веках изучали и переводили труды Архимеда на общедоступный в их среде арабский язык, но существенно новых результатов в интегральном исчислении они не получили. Деятельность европейских ученых в это время была еще более скромной. Лишь в XVI и XVII веках развитие естественных наук поставило перед математикой Европы ряд новых задач, в частности задачи на нахождение квадратур (задачи на вычисление площадей фигур), кубатур (задачи на вычисление объемов тел) и определение центров тяжести .
Интеграл в древности		Однако Архимед не выделил общего содержания интеграционных приемов и понятий об интеграле, а тем более

Слайд 11История возникновения интеграла
Труды Архимеда, впервые изданные в 1544 (на латинском и

греческом языках), стали привлекать широкое внимание, и их изучение явилось одним из важнейших отправных пунктов развития интегрального исчисления. Архимед предвосхитил многие идеи интегрального исчисления. Но потребовалось более полутора тысяч лет, прежде чем эти идеи нашли четкое выражение и были доведены до уровня исчисления. Математики XVII столетия, получившие многие новые результаты, учились на трудах Архимеда. Активно применялся и другой метод - метод неделимых, который также зародился в Древней Греции.
История возникновения интеграла		Труды Архимеда, впервые изданные в 1544 (на латинском и греческом языках), стали привлекать широкое внимание,

Слайд 12История возникновения интеграла
Например, криволинейную трапецию они представляли себе составленной из вертикальных

отрезков длиной f(x) , которым тем не менее приписывали площадь, равную бесконечно малой величине f(x)dx. В соответствии с таким пониманием искомая площадь считалась равной сумме S бесконечно большого числа бесконечно малых площадей. Иногда даже подчеркивалось, что отдельные слагаемые в этой сумме - нули, но нули особого рода, которые сложенные в бесконечном числе, дают вполне определенную положительную сумму.
История возникновения интеграла		Например, криволинейную трапецию они представляли себе составленной из вертикальных отрезков длиной f(x) , которым тем

Слайд 13История возникновения интеграла
На такой кажущейся теперь по меньшей мере сомнительной основе

И. Кеплер (1571 - 1630 гг.) в своих сочинениях "Новая астрономия" (1609 г.) и "Стереометрия винных бочек" (1615 г.) правильно вычислил ряд площадей (например площадь фигуры, ограниченной эллипсом) и объемов (тело резалось на бесконечно тонкие пластинки).
Эти исследования были продолжены итальянскими математиками Б. Кавальери (1598 - 1647 годы) и Э. Торричелли (1608 -1647 годы).
История возникновения интеграла		На такой кажущейся теперь по меньшей мере сомнительной основе И. Кеплер (1571 - 1630 гг.)

Слайд 14История возникновения интеграла
В XVII веке были сделаны многие открытия, относящиеся к

интегральному исчислению.
Однако при всей значимости результатов, полученных математиками XVII столетия, исчисления еще не было. Необходимо было выделить общие идеи, лежащие в основе решения многих частных задач, а также установить связь операций дифференцирования и интегрирования, дающую достаточно точный алгоритм.
История возникновения интеграла		В XVII веке были сделаны многие открытия, относящиеся к интегральному исчислению. 		Однако при всей значимости

Слайд 15История возникновения интеграла
Это сделали Ньютон и Лейбниц, открывшие независимо друг от

друга факт, известный вам под названием формулы Ньютона - Лейбница. Тем самым окончательно оформился общий метод.
История возникновения интеграла		Это сделали Ньютон и Лейбниц, открывшие независимо друг от друга факт, известный вам под названием

Слайд 16История возникновения интеграла
Предстояло еще научиться находить первообразные многих функций, дать логические

основы нового исчисления и т. п. Но главное уже было сделано: дифференциальное и интегральное исчисление создано.
История возникновения интеграла		Предстояло еще научиться находить первообразные многих функций, дать логические основы нового исчисления и т. п.

Слайд 17История возникновения интеграла
Методы математического анализа активно развивались в следующем столетии (в

первую очередь следует назвать имена Л. Эйлера, завершившего систематическое исследование интегрирования элементарных функций, и И. Бернулли). В развитии интегрального исчисления приняли участие русские математики М. В. Остроградский (1801 - 1862 гг.), В. Я. Буняковский (1804 - 1889 гг.), П. Л. Чебышев (1821 - 1894 гг.). Принципиальное значение имели, в частности, результаты Чебышева, доказавшего, что существуют интегралы, не выразимые через элементарные функции.
История возникновения интеграла		Методы математического анализа активно развивались в следующем столетии (в первую очередь следует назвать имена Л.

Слайд 18История возникновения интеграла
Строгое изложение теории интеграла появилось только в прошлом веке,

Решение этой задачи связано с именами О. Коши, одного из крупнейших математиков, немецкого ученого Б. Римана (1826 - 1866 гг.), французского математика Г. Дарбу (1842 - 1917).
История возникновения интеграла		Строгое изложение теории интеграла появилось только в прошлом веке, Решение этой задачи связано с именами

Слайд 19История возникновения интеграла
Ответы на многие вопросы, связанные с существованием площадей и

объемов фигур, были получены с созданием К. Жорданом (1826 - 1922 гг.) теории меры.
История возникновения интеграла		Ответы на многие вопросы, связанные с существованием площадей и объемов фигур, были получены с созданием

Слайд 20История возникновения интеграла
Различные обобщения понятия интеграла уже в начале нашего столетия

были предложены французскими математиками А. Лебегом (1875 - 1941 гг.) и А. Данжуа (1884 - 1974) советским математиком А. Я. Хинчиным (1894 -1959 гг.) 
История возникновения интеграла		Различные обобщения понятия интеграла уже в начале нашего столетия были предложены французскими математиками А. Лебегом

Слайд 21Фронтальный опрос по теории

Вопросы

1. Дать определение неопределённого интеграла.
2. Какие способы вычисления неопределённого интеграла вы знаете?

Ответы

1. Совокупность всех первообразных F(x)+С
для функции f(x).
2. 3 способа: способ непосредственного интегрирования, способ замены, способ интегрирования по частям.

Фронтальный опрос по теории          Вопросы1. Дать определение неопределённого

Слайд 22Вопросы для повторения
Вопросы
3. Что называется интегрированием?


4. Чем отличаются друг от друга

различные первообразные для данной функции f(x)?



Ответы

3.Операция нахождения неопределённого интеграла от данной функции.
4. Постоянной С.



Вопросы для повторенияВопросы3. Что называется интегрированием?4. Чем отличаются друг от друга различные первообразные для данной функции f(x)?Ответы3.Операция

Слайд 23Вопросы для повторения
Вопросы
5. Какая функция называется первообразной для данной функции f(x)?



Ответы
5.

Функция F(x) называется первообразной для функции f(x) на интервале (a;b), если для всех х:



Вопросы для повторенияВопросы5. Какая функция называется первообразной для данной функции f(x)?Ответы5. Функция F(x) называется первообразной для функции

Слайд 24Вопросы для повторения
Вопросы
6. Сформулируйте свойства неопределённого интеграла…



Ответы
- Постоянный множитель можно выносить

за знак интеграла;
Интеграл суммы равен сумме интегралов слагаемых;
Производная неопределённого интеграла равна подынтегральной функции;
Дифференциал неопределённого интеграла равен подынтегральному выражению.



Вопросы для повторенияВопросы6. Сформулируйте свойства неопределённого интеграла…Ответы- Постоянный множитель можно выносить за знак интеграла;Интеграл суммы равен сумме

Слайд 25Таблица неопределенных интегралов

Таблица неопределенных интегралов

Слайд 26Таблица неопределенных интегралов

Таблица неопределенных интегралов

Слайд 27 МАТЕМАТИЧЕСКАЯ ЭСТАФЕТА
Инструктаж: Работа в командах (по рядам). На последней парте

каждого ряда находится листок с 10 заданиями (по два примера на каждую парту). Первая пара учащихся, выполнив любые два задания, передает листок впереди сидящим. Работа считается оконченной, когда учитель получается листок с правильно выполненными 10 заданиями. Вы можете решить не только свои задания, но и проверить правильность решения членов своей команды. Побеждает та команда, которая правильно и раньше всех решит все задания.
МАТЕМАТИЧЕСКАЯ ЭСТАФЕТАИнструктаж: Работа в командах (по рядам). На последней парте каждого ряда находится листок с 10

Слайд 28 Закрепление практических умений и навыков

Решение типовых примеров по образцу

Закрепление практических умений и навыковРешение типовых примеров по образцу

Слайд 29Примеры табличного интегрирования
Примеры интегрирования методом подстановки
Пример №1
Пример №2
Пример №3
Тренинг
Пример №4
Пример №5
Пример

№6

Пример №7

Примеры  табличного интегрированияПримеры интегрирования методом подстановкиПример №1Пример №2Пример №3ТренингПример №4Пример №5Пример №6Пример №7

Слайд 30Пример №1
Интеграл суммы выражений равен сумме интегралов этих выражений
Постоянный множитель можно

вынести за знак интеграла
Пример №1Интеграл суммы выражений равен сумме интегралов этих выраженийПостоянный множитель можно вынести за знак интеграла

Слайд 31Пример №2
Записать решение:
Проверить решение
?

Пример №2Записать решение:Проверить решение?

Слайд 32Пример №3
Записать решение:
Проверить решение
?

Пример №3Записать решение:Проверить решение?

Слайд 33Пример №4
Все способы интегрирования имеют целью свести интеграл к табличному.
Способ подстановки

заключается в следующем:
заменяют новой переменной такую часть подынтегральной функции, при дифференцировании которой получается оставшаяся часть подынтегрального выражения.

Определим, к какому табличному интегралу приводится данный интеграл

Определим, какую часть подынтегральной функции нужно заменить и записываем замену

Находим дифференциалы обеих частей, выражаем старый дифференциал через новый

Производим замену в интеграле и находим его с помощью таблицы

Производим обратную замену, то есть переходим к старой переменной

Пример №4Все способы интегрирования имеют целью свести интеграл к табличному.Способ подстановки заключается в следующем:заменяют новой переменной такую

Слайд 34Введем новую переменную и выразим дифференциалы:
Пример №5
Записать решение:
Проверить решение

Введем новую переменную и выразим дифференциалы:Пример №5Записать решение:Проверить решение

Слайд 35Введем новую переменную и найдем её дифференциал

Пример №6
Записать решение:
Проверить решение

Введем новую переменную и найдем её дифференциалПример №6Записать решение:Проверить решение

Слайд 36Пример №7
Записать решение:
Проверить решение

Пример №7Записать решение:Проверить решение

Слайд 37Найти неопределенный интеграл
Проверить решение
Проверить решение

Найти неопределенный интегралПроверить решениеПроверить решение

Слайд 38Следует отметить, что для функции вида f(kx+b) можно применять упрощенную формулу

Следует отметить, что для функции вида f(kx+b) можно применять упрощенную формулу

Слайд 39Решение типичных примеров
1. Вычислить интеграл:



2. Вычислить интеграл методом подстановки:




3.

Вычислить интеграл методом интегрирования по частям:

Решение типичных примеров1. Вычислить интеграл:2. Вычислить интеграл методом подстановки:  3. Вычислить интеграл методом интегрирования по частям:

Слайд 40 1 пример

1 пример

Слайд 41 2 пример

2 пример

Слайд 423 пример

3 пример

Слайд 43 Примем царственную позу, добиваясь хорошей осанки. Три раза вдохнём.

Массажируем кончики пальцев каждой руки. Поставьте указательный палец на точку между бровями и массажируйте три раза. Закрыть веки, массировать их с помощью легких круговых движений пальца.

ФИЗКУЛЬТМИНУТКА

Примем царственную позу, добиваясь хорошей осанки. Три раза вдохнём. Массажируем кончики пальцев каждой руки. Поставьте

Слайд 44
Применение практических умений и навыков
«ВЫПОЛНЕНИЕ ПРАКТИЧЕСКОЙ РАБОТЫ»

Применение практических умений и навыков«ВЫПОЛНЕНИЕ ПРАКТИЧЕСКОЙ РАБОТЫ»

Слайд 45 ПРОВЕРКА УМЕНИЙ и НАВЫКОВ
Самостоятельная работа по теме: «Вычисление

неопределённого интеграла»
КРИТЕРИЙ ОЦЕНОК:
ОЦЕНКА «5» – за правильное решение всех 3-х примеров;
ОЦЕНКА «4» – за правильное решение 2-х примеров;
ОЦЕНКА «3» – за правильное решение 1-го примера.




ПРОВЕРКА УМЕНИЙ и НАВЫКОВ  Самостоятельная работа по теме: «Вычисление неопределённого интеграла» КРИТЕРИЙ ОЦЕНОК:ОЦЕНКА «5» –

Слайд 46 Информация по домашнему заданию:
Повторить основные понятия и свойства по теме

«Неопределённый интеграл».
Составить кроссворд (ребус) по теме «Неопределённый интеграл».
Выполнить решение примеров по карточкам.
Информация по домашнему заданию:Повторить основные понятия и свойства по теме «Неопределённый интеграл».Составить кроссворд (ребус) по теме

Слайд 47Ну кто придумал эту математику !
У меня всё получилось!!!

Надо решить ещё

пару примеров.

Рефлексия

Ну кто придумал эту математику !У меня всё получилось!!!Надо решить ещё пару примеров.Рефлексия

Слайд 48 Рефлексия деятельности
Благодаря сегодняшнему уроку, я …
Сегодняшний урок помог мне …
Сегодня

на уроке мне запомнилось …
Сегодня на уроке мне больше всего понравилось …
После сегодняшнего урока мне захотелось …
Сегодня на уроке я узнал(а) …
После сегодняшнего урока я буду знать …
После сегодняшнего урока я хочу сказать …
Сегодня на уроке я научился …
Сегодняшний урок дал мне …
Рефлексия деятельностиБлагодаря сегодняшнему уроку, я …Сегодняшний урок помог мне …Сегодня на уроке мне запомнилось …Сегодня на

Слайд 49 ПОДВЕДЕНИЕ ИТОГОВ УРОКА

“Музыка может возвышать или умиротворять душу,

Живопись – радовать

глаз,

Поэзия - пробуждать чувства,

Философия – удовлетворять потребности разума,

Инженерное дело – совершенствовать

материальную сторону жизни людей,

а математика способна достичь всех этих целей”.


американский математик Морис Клайн.
ПОДВЕДЕНИЕ ИТОГОВ УРОКА“Музыка может возвышать или умиротворять душу,Живопись – радовать глаз,Поэзия - пробуждать чувства,Философия – удовлетворять

Слайд 50Спасибо
за активное
участие на уроке!!!

Спасибоза активноеучастие на уроке!!!

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть