Чтобы решить биквадратное уравнение, вводят новое неизвестное при помощи равенства у = х2
Тогда исходное уравнение превращается в квадратное относительно неизвестного y.
исходное уравнение примет вид:
так как то оно имеет два корня.
По теореме обратной теореме Виета имеем:
исходное уравнение примет вид:
так как то оно имеет два корня.
Определим корни по формуле
исходное уравнение примет вид:
- исключается
Обратная подстановка дает:
Ответ:
исходное уравнение примет вид:
Его дискриминант
следовательно оно не имеет корней. Тогда и исходное уравнение тоже не имеет корней.
Ответ: корней нет.
исходное уравнение примет вид:
Его дискриминант
следовательно оно имеет единственный корень.
Обратная подстановка дает:
Ответ:
исходное уравнение примет вид:
для которого
таким образом оно имеет единственный корень
Значит исходное уравнение не имеет корней.
Ответ: корней нет.
Скоро мы познакомимся с комплексными числами и узнаем, что биквадратное уравнение имеет, вообще говоря, четыре комплексных корня.
Впрочем, бывает, что их меньше чем четыре, но в таких случаях считают, что некоторые корни кратные.
Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.
Email: Нажмите что бы посмотреть