Презентация, доклад по математике Тригонометрические уравнения

The functions cosΘ° and sinΘ° have the following properties Periodic property周期性: cos(Θ±360) °=cosΘ°cos(Θ±360) °=cosΘ°Odd property奇偶性:cos(-Θ)°=cosΘ° sin(-Θ)°=-sinΘ°Translation property: cos(Θ-180)°=-cosΘ° sin(Θ-180)°=- sinΘ° cos(180-Θ)°=-cosΘ° sin(180-Θ)°=- sinΘ°

Слайд 1Made by ALEX
P1 Chapter 10
Part 3
TRIGONOMETRY
Trig Equations

Made by ALEXP1 Chapter 10Part 3TRIGONOMETRYTrig Equations

Слайд 2The functions cosΘ° and sinΘ° have the following properties
Periodic property周期性:

cos(Θ±360) °=cosΘ°cos(Θ±360) °=cosΘ°
Odd property奇偶性:cos(-Θ)°=cosΘ° sin(-Θ)°=-sinΘ°
Translation property: cos(Θ-180)°=-cosΘ° sin(Θ-180)°=- sinΘ°
cos(180-Θ)°=-cosΘ° sin(180-Θ)°=- sinΘ°
The functions cosΘ° and sinΘ° have the following properties Periodic property周期性: cos(Θ±360) °=cosΘ°cos(Θ±360) °=cosΘ°Odd property奇偶性:cos(-Θ)°=cosΘ°

Слайд 3The function tanΘ° has the following properties
Periodic property周期性: tan(Θ±180) °=tanΘ°
Odd

property奇偶性: tan(-Θ) °=-tanΘ°
tan(180-Θ) °=-tanΘ°
The function tanΘ° has the following properties Periodic property周期性: tan(Θ±180) °=tanΘ°Odd property奇偶性:  tan(-Θ) °=-tanΘ°

Слайд 4Solution: The calculator gives us the solution x =

Solution: The calculator gives us the solution x =

Слайд 5We will adapt the question to:
There are 2 solutions.
The symmetry of

the graph . . .

. . . shows the 2nd solution is

We will adapt the question to:There are 2 solutions.The symmetry of the graph . . .. .

Слайд 6Solution: The first answer from the calculator is
There are 2 solutions.
The

symmetry of the graph . . .

. . . shows the 2nd solution is

Solution: The first answer from the calculator isThere are 2 solutions.The symmetry of the graph . .

Слайд 7Find the principal solution from a calculator.
Find the 2nd solution

using symmetry

or

Draw the line y = c.

Find the principal solution from a calculator. Find the 2nd solution using symmetryorDraw the line y =

Слайд 8Solve the equations
(a) and

(b) for
Solve the equations 	(a)       and (b)

Слайд 10The 2nd solution is

The 2nd solution is

Слайд 12and keep adding . . .

and keep adding . . .

Слайд 14Switching the calculator to radians, we get
Solution:
implies radians
2nd solution:

Switching the calculator to radians, we getSolution:implies radians2nd solution:

Слайд 15This value is outside the required interval

. . .

. . . but we still use it to solve the equation.

Tip: Bracket a value if it is outside the interval.

This value is outside the required interval

Слайд 16. . . is
Solution:

. . . is Solution:

Слайд 17Solution:

Solution:

Слайд 19Method 1

Method 1

Слайд 20Method 2

Method 2

Слайд 21Find the principal value from the calculator.
Sketch the graph of

the trig function showing at least one complete cycle and including the principal value.

Find a 2nd solution using the graph.

Find the principal value from the calculator.

Find the principal value from the calculator. Sketch the graph of the trig function showing at least

Слайд 221. Solve the equations ( giving answers correct to the nearest whole

degree )

(b) for

(a) for

1.	Solve the equations ( giving answers correct to the nearest whole degree )(b)

Слайд 23(a) for

(a)        for

Слайд 24Either:
Or:

Either:Or:

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть