Презентация, доклад по математике Прямые линии в Декартовой системе координат, 11 класс

and y-intercept, c = The equation of a straight line is

Слайд 1«Straight Lines and Gradients»
Made by ALEX
P1 Chapter 1.1

«Straight Lines  and Gradients»Made by ALEXP1 Chapter 1.1

Слайд 2and y-intercept, c =
The equation of a straight line is

and y-intercept, c = The equation of a straight line is

Слайд 3The coordinates of any point lying on the line satisfy the

equation of the line

showing that the point ( 4,7 ) lies on the line.

The coordinates of any point lying on the line satisfy the equation of the lineshowing that the

Слайд 4Finding the equation of a straight line when we know
its gradient,

m and
the coordinates of a point on the line.
Finding the equation of a straight line when we knowits gradient, m and the coordinates of a

Слайд 5If we don’t know the gradient, we have to find it

using two points on the line.

We develop the formula by reminding ourselves about the meaning of a gradient.

To do this, we can use a formula.

If we don’t know the gradient, we have to find it using two points on the line.We

Слайд 64
2
e.g.

42e.g.

Слайд 9The gradient of the straight line joining the points
and

is
To use this

formula, we don’t need a diagram!

Solution:

The gradient of the straight line joining the pointsandisTo use this formula, we don’t need a diagram!Solution:

Слайд 10To find the equation of a straight line given 2 points

on the line.

Solution: First find the gradient:

To find the equation of a straight line given 2 points on the line.	Solution: First find the

Слайд 11SUMMARY
Equation of a straight line
Gradient of a straight line
where m is

the gradient and c is the intercept on the y-axis
SUMMARYEquation of a straight lineGradient of a straight linewhere m is the gradient and c is the

Слайд 122. Find the equation of the line through the points
Exercise
Solution:


So,

Solution:

So,

2. Find the equation of the line through the points ExerciseSolution: So,Solution: So,

Слайд 13We sometimes rearrange the equation of a straight line so that

zero is on the right-hand side ( r.h.s. )

We must take care with the equation in this form.

We sometimes rearrange the equation of a straight line so that zero is on the right-hand side

Слайд 14Parallel and Perpendicular Lines

Parallel and Perpendicular Lines

Слайд 16We don’t usually leave fractions ( or decimals ) in equations.

So, multiplying by 2:
We don’t usually leave fractions ( or decimals ) in equations. So, multiplying by 2:

Слайд 17If the gradient isn’t given, find the gradient using

Method of finding

the equation of a straight line:

SUMMARY

If the gradient isn’t given, find the gradient usingMethod of finding the equation of a straight line:SUMMARY

Слайд 18Solution:
So,
Solution:
So,
Parallel line is
So,

Solution: So,Solution: So,Parallel line isSo,

Слайд 19A Second Formula for a Straight Line
Let ( x, y )

be any point on the line
A Second Formula for a Straight LineLet ( x, y ) be any point on the line

Слайд 20Solution: First find the gradient
We could use the 2nd point,
(-1, 3)

instead of (2, -3)
Solution: First find the gradientWe could use the 2nd point,(-1, 3) instead of (2, -3)

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть