Consider the numbers 1 and 2 :
Examples of linear inequalities:
Dividing by −1 gives −1 and −2
BUT −1 is greater than −2
−1
−2
1
2
Examples of linear inequalities:
Dividing by −1 gives −1 and −2
BUT −1 is greater than −2
The inequality has been reversed
Consider the numbers 1 and 2 :
Solution: Collect the like terms
Notice the change from “less than” to “greater than”
Collecting the x-terms on the side which makes the coefficient positive avoids the need to divide by a negative number
Substitute one value of x as a check on the answer
1.
2.
Solution:
Solution: Either
Or
Divide by -4:
so,
Method: ALWAYS use a sketch
If multiplying or dividing by a negative number, reverse the inequality
Quadratic ( or other ) Inequalities
rearrange to get zero on one side, find the zeros and sketch the function
Use the sketch to find the x-values satisfying the inequality
Don’t attempt to combine inequalities that describe 2 or more separate intervals
SUMMARY
Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.
Email: Нажмите что бы посмотреть