Презентация, доклад по алгебре на тему Построение графика квадратичной функции

Цели:используя выводы, полученные на предыдущем уроке, научится находить координаты вершины параболы произвольной квадратичной функции;составить удобный план построения графика квадратичной функции.

Слайд 1Построение графика квадратичной функции у=ах2+bx+c
Учитель математики: Милевич Н.Н.
МБОУ СОШ №6

г.Владикавказ РСО-Алания
Построение графика квадратичной функции у=ах2+bx+cУчитель математики: Милевич Н.Н. МБОУ СОШ №6 г.Владикавказ РСО-Алания

Слайд 2 Цели:
используя выводы, полученные на предыдущем уроке, научится находить координаты вершины

параболы произвольной квадратичной функции;
составить удобный план построения графика квадратичной функции.
Цели:используя выводы, полученные на предыдущем уроке, научится находить координаты вершины параболы произвольной квадратичной функции;составить удобный план

Слайд 3 Повторим изученное:

Повторим изученное:

Слайд 4



У
Установите соответствие между графиком функции
формулой и координатами вершины параболы:







УУстановите соответствие между графиком функцииформулой и координатами вершины параболы:

Слайд 5



У


Установите соответствие между графиком функции
формулой и координатами вершины параболы:





УУстановите соответствие между графиком функцииформулой и координатами вершины параболы:

Слайд 6Х
У
1
1
-2
2
3
-1
Используя правила переноса графика функции у=ах2, постройте график функции у=2х2+4х-6.

Координаты

вершины:
(-1; 8)



Какая точка является самой
важной для
построения параболы?

ХУ11-223-1Используя правила переноса графика функции у=ах2, постройте график функции у=2х2+4х-6. Координаты вершины:(-1; 8)Какая точка является самой важной

Слайд 7Как найти координаты вершины параболы для графика произвольной функции у=ах2+bх+с?
Выведем

формулу.
Как найти координаты вершины параболы для графика произвольной функции у=ах2+bх+с? Выведем формулу.

Слайд 8Итак:

- удобно найти путем подстановки.

Какие еще точки заслуживают нашего внимания?

Х

У

1

1

-2

2

3

-1


Посмотрим на график и
составим план построения
параболы у=ах2+bх+с.

1) Найдем координаты вершины.

2) Проведем ось симметрии х=х0

3) Найдем точки пересечения с Ох.

Для этого решим уравнение у=0

4) Найдем дополнительные точки.

В этом нам и поможет ось симметрии.






График построен. Опишите свойства
данной функции по графику.

Итак:              - удобно найти

Слайд 9Х
У
1
1
-2
2
3
-1






1. D(y): R
2. у=0, если х=1; -3
3. у>0, если х
4. у↓,

если х

у↑, если х

5. унаим= -8, если х= -1

унаиб – не существует.

6. Е(y):

Проверь себя:

у<0, если х

ХУ11-223-11. D(y): R2. у=0, если х=1; -33. у>0, если х4. у↓, если х  у↑, если х5.

Слайд 10Подведем итоги урока.
Что мы узнали нового о квадратичной
функции

и ее графике?
Подведем итоги урока. Что мы узнали нового о квадратичной функции  и ее графике?

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть