Презентация, доклад по теме: Магнитотвёрдые материалы,ОП.07 Материаловедение, ЭРМ и РК для специальностей 11.02.01, 11.02.02

Содержание

Содержание:

Слайд 1Презентация на тему: Магнитотвёрдые материалы
Преподаватель Абрамова Н.И.

Презентация на тему: Магнитотвёрдые материалыПреподаватель Абрамова Н.И.

Слайд 2Содержание:

Содержание:

Слайд 31.Магнитотвёрдые материалы
1.1 Общие сведения.
К магнитотвердым материалам относятся магнитные материалы с широкой

петлей гистерезиса и большой коэрцитивной силой Нс.
Основными характеристиками магнитотвердых материалов являются:
- коэрцитивная сила Нс,
- остаточная индукция Вс,
- максимальная удельная магнитная энергия, отдаваемая во внешнее пространство мах.

1.Магнитотвёрдые материалы1.1 Общие сведения. 	К магнитотвердым материалам относятся магнитные материалы с широкой петлей гистерезиса и большой коэрцитивной

Слайд 4Магнитная проницаемость  магнитотвердых материалов значительно меньше, чем у магнитомягких. Чем

«тверже» магнитный материал, т.е. чем выше его коэрцитивная сила Нс, тем меньше его магнитная проницаемость.
Влияние температуры на величину остаточной магнитной индукции Br, которая соответствует максимальному значению магнитной индукции Bmax, оценивается температурным коэффициентом остаточной магнитной индукции (К-1)

Магнитная проницаемость  магнитотвердых материалов значительно меньше, чем у магнитомягких. Чем «тверже» магнитный материал, т.е. чем выше

Слайд 5 Максимальная удельная магнитная энергия мах является важнейшим параметром при оценке качества

магнитотвердых материалов.
Максимальная удельная магнитная энергия, Дж/м2: 

Постоянный магнит при замкнутом магнитопроводе практически не отдает энергию во внешнее пространство, так как почти все магнитные силовые линии замыкаются внутри сердечника, и магнитное поле вне сердечника отсутствует. Для использования магнитной энергии постоянных магнитов в замкнутом магнитопроводе создают воздушный зазор определенных размеров и конфигурации, магнитное поле в котором используют для технических целей.
Магнитный поток постоянного магнита с течением времени уменьшается. Это явление называется старением магнита. Старение может быть обратимым и необратимым.

Максимальная удельная магнитная энергия мах является важнейшим параметром при оценке качества магнитотвердых материалов.	Максимальная удельная магнитная энергия, Дж/м2: 

Слайд 6 В случае обратимого старения при воздействии на постоянный магнит ударов, толчков,

резких колебаний температуры, внешних постоянных полей происходит снижение его остаточной магнитной индукции Br на 1…3%; при повторном намагничивании свойства таких магнитов восстанавливаются.
Если со временем в постоянном магните произошли структурные изменения, то повторное намагничивание не устраняет необратимого старения.
По назначению магнитотвердые материалы подразделяются на материалы для постоянных магнитов и материалы для записи и хранения информации (звуковой, цифровой, видеоинформации и др.).
По составу и способу получения магнитотвердые материалы подразделяют на налитые, порошковые и прочие.
В случае обратимого старения при воздействии на постоянный магнит ударов, толчков, резких колебаний температуры, внешних постоянных полей

Слайд 71.2 Литые материалы на основе сплавов.
Эти материалы имеют основой сплавы железо-

никель- алюминий (Fe-Ni-Al) и железо- никель- кобальт (Fe-Ni-Co) и являются основными материалами для изготовления постоянных магнитов. Эти сплавы относят к прецизионным, так как их количество в решающей степени определяется строгим соблюдением технологических факторов.
Магнитотвердые литые материалы получают в результате дисперсионного твердения сплава при его охлаждении с определенной скоростью от температуры плавления до температуре начала распада. В процессе твердения происходит высокотемпературный распад твердого раствора на -фазу и 2-фазу. -фаза близка по составу к чистому железу, которое обладает выраженными магнитными свойствами. Она выделяется в виде пластинок однодоменной толщины. 2-фаза близка по составу к интерметаллическому соединению никель- алюминий Ni-Al, обладающему низкими магнитными свойствами.
1.2 Литые материалы на основе сплавов.Эти материалы имеют основой сплавы железо- никель- алюминий (Fe-Ni-Al) и железо- никель-

Слайд 8В результате получают систему, состоящую из немагнитной фазы 2 с однодоменным

сильномагнитным включениями фазы , которая обладает большой коэрцитивной силой Нс. Такие сплавы не применяют из-за сравнительно низких магнитных свойств. Наибольшее распространенными являются сплавы железо- никель– алюминий, легированные медью Cu и кобальтом Со.
Марки этих материалов содержат буквы Ю и Н, указывающие на наличие в них алюминия и никеля. При использовании легирующих металлов в обозначение марок вводят дополнительные буквы, которые соответствуют этим металлам, например, сплав системы железо- никель- алюминий, легированный кобальтом, марки ЮНДК.
Бескобальтовые сплавы обладают относительно низкими магнитными свойствами, но они являются самыми дешевыми.
Кобальтовые сплавы применяют для изготовления изделий, которые требуют материалов с относительно высокими магнитными свойствами и магнитной изотропностью.
Высококобальтовые сплавы представляют собой сплавы с магнитной или с магнитной и кристаллической текстурой, содержащие кобальт более 15%.

В результате получают систему, состоящую из немагнитной фазы 2 с однодоменным сильномагнитным включениями фазы , которая обладает

Слайд 9
Сплавы с магнитной текстурой получают в результате охлаждения сплава в магнитном

поле с напряженностью 160…280 кА/м от высоких температур 1250…1300С до температуры приблизительно 500С. полученный сплав приобретает улучшенный магнитные характеристики лишь в направлении действия поля, т.е. материал становится магнитоанизотропный.
Для сплавов, содержащих 12% кобальта, термомагнитная обработка увеличивает магнитную энергию приблизительно на 20% а для сплавов, содержащих 20…25% кобальта, -на 80% и более.
Термомагнитная обработка повышает температуру начала дисперсного распада с 950С в сплаве без кобальта до 800С в сплаве, содержащем 24% кобальта.
В результате термомагнитной обработки у высококобальтовых сплавов повышается также температура точки Кюри с 730 до 850С.


Сплавы с магнитной текстурой получают в результате охлаждения сплава в магнитном поле с напряженностью 160…280 кА/м от

Слайд 10
Кристаллическую текстуру получают в процессе особых условий охлаждения сплавов. В результате

получают магниты с особой микротекстурой в виде столбчатых кристаллов, ориентированных в направлении легкого намагничивания. Это повышает магнитные свойства сплавов .магнитная энергия повышается на 60…70%. Увеличивается коэрцитивная сила Нс, остаточная магнитная индукция Br и коэффициент выпуклости кривой размагничивания материала:
 
Высококобальтовые текстурированные сплавы применяют для изготовления малогабаритных изделий, требующих высоких магнитных свойств и магнитной анизотропии.
Недостатками высококобальтовых материалов являются высокая твердость и хрупкость, что значительно осложняет их механическую обработку.


Кристаллическую текстуру получают в процессе особых условий охлаждения сплавов. В результате получают магниты с особой микротекстурой в

Слайд 111.3 Порошковые магнитотвердые материалы (постоянные магниты).
Порошковые магнитотвердые материалы применяют для изготовления

миниатюрных постоянных магнитов сложной формы. Их подразделяют на металлокерамические, металлопластические, оксидные и микропорошковые.
Металлокерамические магниты по магнитным свойствам лишь немного уступают литым магнитам, но дороже их.
Получают металлокерамические магниты в результате прессования металлических порошков без связующего материала и спекания их при высоких температурах. Для порошков используют сплавы ЮНДК (сплав системы Fe-Ni-Al-, легированный кобальтом); на основе платины (Pt-Co, Pt-Fe); на основе редкоземельных металлов.
Металлокерамические магниты на основе сплавов ЮНДК обладают магнитными свойствами по параметрам Br и max на 10…20% ниже, чем у литых магнитов благодаря повышенной пористости спеченного порошкового материала до 5%; по механической прочности в 3…6 раз превосходят литые.
1.3 Порошковые магнитотвердые материалы (постоянные магниты).	Порошковые магнитотвердые материалы применяют для изготовления миниатюрных постоянных магнитов сложной формы. Их

Слайд 12Магниты на основе платиновых сплавов обладают высокими значениями коэрцитивной силы Нс,

которые в 1,5…2 раза выше Нс бариевых магнитов; высокой стабильностью параметров; по максимальной магнитной энергии мах сравнимы со сплавом ЮНДК 24.
Сплавы на основа редкоземельных металлов (РЗМ) и урана при определенных соотношениях обладают очень высокими значениями коэрцитивной силы Нс (предельное теоретическое значение составляет 1032 кА/м) и рекордными значениями максимальной удельной магнитной энергии мах (предельное теоретическое значение достигает 112 кДж/м3.
Среди сплавов на основе редкоземельных наибольшее значение имеют интерметаллические соединения типа RCo5, где R – редкоземельный металл. В марке соединения буква К означает кобальт, С – самарий, П – празеодим.
Сплавы на основе редкоземельных металлов получают холодным прессованием порошка сплава RCo5 до высокой степени плотности, спеканием брикетов из порошков в присутствии жидкой фазы и литьем многокомпонентных сплавов, в которых кобальт замещен медью и железом.
Магниты на основе платиновых сплавов обладают высокими значениями коэрцитивной силы Нс, которые в 1,5…2 раза выше Нс

Слайд 13Металлопластические магниты имеют пониженные магнитные свойства по сравнению с литыми магнитами,

однако они обладают большим электрическим сопротивлением, малой плотностью, меньшей стоимостью.
Получают металлопластические магниты, кок и металлокерамические, из металлических порошков, которые прессуют вместе с изолирующей связкой и нагревают до невысоких температур, необходимых для полимеризации связующего вещества.
Бариевые магниты обладают следующими свойствами:
Значения остаточной магнитной индукции Br в 2…4 раза меньше, чем у литых магнитов;
Большая коэрцитивная сила Нс, что придает им повышенную стабильность при воздействии внешних магнитных полей, ударов и толчков;
Плотность d примерно в 1,5 раза меньше плотности сплавов типа ЮНДК, что существенно снижает массу магнитных систем;
Удельное электрическое сопротивление  (104…107 Ом*м) в миллионы раз выше, чем сопротивление магнитотвердых сплавов, поэтому ферриты бария используют в цепях, подвергающихся действию высокочастотных полей;
Не содержат дефицитных и дорогих металлов, поэтому по стоимости бариевые магниты примерно в 10 раз дешевле магнитов из сплава ЮНДК.

Металлопластические магниты имеют пониженные магнитные свойства по сравнению с литыми магнитами, однако они обладают большим электрическим сопротивлением,

Слайд 14К недостаткам бариевых магнитов относят:
1) плохие механические свойства (высокая хрупкость и

твердость);
2) большую зависимость магнитных свойств от температуры (температурный коэффициент остаточной магнитной индукции ТКВr в 10 раз больше, чем ТКВr литых магнитов);
3) эффект необратимой потери магнитных свойств после охлаждения магнита до температуры -60С и ниже (после охлаждения и последующего нагревания до начальной температуры магнитные свойства не восстанавливаются).

В отличии от технологии изготовления магнитомягких ферритов после сухого помола для лучшего измельчения частиц исходного сырья производят мокрый помол. Полученную массу отстаивают, заливают в пресс-формы и затем прессуют в магнитном поле при медленном увеличении давления и одновременной откачке воды. После прессования изделие размагничивают, для чего включают и выключают ток, который имеет обратное по сравнению с намагничивающим током направление.

К недостаткам бариевых магнитов относят:1) плохие механические свойства (высокая хрупкость и твердость);2) большую зависимость магнитных свойств от

Слайд 15Кроме мокрого для изготовления бариевых магнитов применяют также сухое прессование.
Промышленность выпускаем

бариевые изотропные БИ и бариевые анизотропные БА магниты.
Кобальтовые магниты обладают следующими свойствами:
более высокая стабильность параметров, чем у бариевых;
температурный гистерезис, т.е. зависимость магнитных свойств от температуры, которая появляется не в области отрицательных температур, как у бариевых магнитов, а при нагревании до температуры выше 80С;
из-за большой хрупкости и низкой механической прочности их крепят с помощью клея;
высокая стоимость.
Технология изготовления кобальтовых магнитов отличается от технологии получения бариевых ферритов операцией термомагнитной обработки, которая состоит в нагревании спеченных магнитов до температуры 300…350С в течении 1,5 часов и охлаждения в магнитном поле в течении 2 часов.

Кроме мокрого для изготовления бариевых магнитов применяют также сухое прессование.Промышленность выпускаем бариевые изотропные БИ и бариевые анизотропные

Слайд 16Магниты из микропорошков Mn-Bi поучают прессованием специально подготовленного микропорошка. Для этого

марганцево-висмутовый сплав (23% Mn; 77% Bi) подвергают механическому дроблению до получения частиц однодоменных размеров (5…8 мкм). Пропуская порошок через магнитный сепаратор отделяют ферромагнитную фазу Mn-Bi от немагнитных частиц марганца и висмута. В результате прессования микропорошка ферромагнитной фазы при температуре примерно 300С в магнитном поле получают магниты, которые состоят из отдельных частиц с одинаковой ориентацией осей легкого намагничивания; сохраняют магнитные свойства только до температуры не ниже 20С (при понижении свойства быстро ухудшаются и для их восстановления необходимо повторное намагничивание), что существенно ограничивает их применение.

Магниты из микропорошков Mn-Bi поучают прессованием специально подготовленного микропорошка. Для этого марганцево-висмутовый сплав (23% Mn; 77% Bi)

Слайд 171.4 Прочие магнитотвердые материалы.
К этой группе относятся материалы, которые имеют узкоспециальное

применение:
пластически деформируемые сплавы,
эластичные магниты,
материалы для магнитных носителей информации,
жидкие магниты.
Пластически деформируемые магниты обладают хорошими пластическими свойствами; хорошо поддаются всем видам механической обработки (хорошо штампуются, режутся ножницами, обрабатываются на металлорежущих станках); имеют высокую стоимость.
Кунифе – медь–никель–железо (Cu-Ni-Fe) обладают анизотропностью (намагничиваются в направлении прокатки).
Применяются в виде проволоки и штамповок.
Викаллой – кобальт–ванадий (Co-V) получают в виде высокопрочной магнитной ленты и проволоки. Из него изготавливают также очень мелкие магниты сложной конфигурации.

1.4 Прочие магнитотвердые материалы.К этой группе относятся материалы, которые имеют узкоспециальное применение:пластически деформируемые сплавы, эластичные магниты, материалы

Слайд 18Эластичные магниты представляют собой магниты на резиновой основе с наполнителем из

мелкого порошка магнитотвердого материала. В качестве магнитотвердого материала чаще всего используют феррит бария. Они позволяют получить изделия любой формы, которую допускает технология изготовления деталей из резины; имеют высокую технологичность (легко режутся ножницами, штампуются, сгибаются, скручиваются) и невысокую стоимость.
«Магнитную резину» применяют в качестве листов магнитной памяти ЭВМ, для отклоняющих систем в телевидении, корректирующих систем.

Эластичные магниты представляют собой магниты на резиновой основе с наполнителем из мелкого порошка магнитотвердого материала. В качестве

Слайд 19Магнитные носители информации при перемещении создают в устройстве считывания информации переменное

магнитное поле, которое изменяется во времени также, как записываемый сигнал.

Магнитные носители информации при перемещении создают в устройстве считывания информации переменное магнитное поле, которое изменяется во времени

Слайд 20Материалы для магнитных носителей информации представляют собой металлические ленты и проволоку

из магнитотвердых материалов, сплошные металлические, биметаллические и пластмассовые ленты и магнитные порошки, которые наносятся на ленты, металлические диски и барабаны, магнитную резину и др.
В качестве магнитных порошков используют оксиды железа Fe2O3 и Fe3O4, магнитотвердые ферриты, железоникельалюминиевые сплавы, которые являются доступными и дешевыми материалами.
Жидкие магниты представляют собой жидкость, наполненную мельчайшими частицами магнитотвердого материала. Жидкие магниты на кремний органической основе не расслаиваются даже под воздействием сильных магнитных полей, сохраняют работоспособность в диапазоне температур от –70 до +150С.


Материалы для магнитных носителей информации представляют собой металлические ленты и проволоку из магнитотвердых материалов, сплошные металлические, биметаллические

Слайд 21Конец!
Спасибо за внимание.

Конец!Спасибо за внимание.

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть