Презентация, доклад Производная в физике

Цель работы:показать применение производной в физике.

Слайд 1Производная в физике
f '(x)=lim∆y/∆x
∆x→0

Производная в физикеf '(x)=lim∆y/∆x∆x→0

Слайд 2Цель работы:
показать применение производной в физике.

Цель работы:показать применение производной в физике.

Слайд 3Задачи:
с помощью учебника физики выяснить , какие физические величины

являются производными других физических величин.
Задачи:  с помощью учебника физики выяснить , какие физические величины являются  производными других физических величин.

Слайд 4В примерах мы из физических соображений будем получать равенство вида ∆y=r∆x

и делать вывод о том , что r- это производная y по x.
В примерах мы из физических соображений будем получать равенство вида ∆y=r∆x и делать вывод о том ,

Слайд 5 Работа
Рассмотрим работу , которую совершает заданная сила F при перемещении

по отрезку оси x.
РаботаРассмотрим работу , которую совершает заданная сила F при перемещении по отрезку оси x.

Слайд 6Если сила F постоянна, то работа А ровна произведению F на

длину пути. Если сила меняется, то ее можно рассматривать как функцию от x, т.е. F=F(x). Приращение работы А на отрезке [x; x+dx ] нельзя точно вычислить как произведение F(x)∆ x ,так как сила меняется на этом отрезке . Однако при маленьких ∆ x можно считать , что сила меняется незначительно и произведение представляет собой главную часть А, т.е. является дифференциалом работы : ∆ A=F(x) ∆ x. Таким образом , силу можно считать производной работы по перемещению. F=A' (x)
Если сила F постоянна, то работа А ровна произведению F на длину пути. Если сила меняется, то

Слайд 7Заряд

Заряд

Слайд 8Пусть q- заряд , переносимый электрическим током через поперечное сечение проводника

за время t. Если сила тока I постоянна, то за время ∆ t ток перенесет заряд , равный I ∆ t . При силе тока,изменяющейся со временем по некоторому закону I=I(t), произведение I(t)dtдает часть приращения заряда на маленьком отрезке времени [t; t+ ∆ t],т.е. является дифференциалом заряда: ∆ q=I(t) ∆ t. Тем самым сила тока является производной заряда по времени. I=Q' (t)
Пусть q- заряд , переносимый электрическим током через поперечное сечение проводника за время t. Если сила тока

Слайд 9Масса тонкого стержня

Масса тонкого стержня

Слайд 10Пусть есть неоднородный тонкий стержень. Если ввести координаты так , как

показано на рисунке , то можно рассмотреть функцию m=m(l)- массу куска стержня от точки О до точки l. Неоднородность стержня означает ,что его линейная плотность не является постоянной , а зависит от положения точки l по некоторому закону ρ= ρ (l). Если на маленьком отрезке стержня [l; l+ ∆ l] мы будем считать плотность постоянной и равной ρ (l), то произведение ρ (l) ∆ l дает нам дифференциал массы- ∆ m. Это значит ,что линейная плотность –это производная массы по длине. ρ= m' (l)
Пусть есть неоднородный тонкий стержень. Если ввести координаты так , как показано на рисунке , то можно

Слайд 11Теплота

Теплота

Слайд 12ЗАДАЧА: Вычислить кол-во теплоты, которое необходимо для того чтобы нагреть 1кг вещ-ва

от 0 градусов до t градусов( по Цельсию) C=Q' (t) , где t – темперaтура.
ЗАДАЧА: Вычислить кол-во теплоты, которое необходимо для того чтобы нагреть 1кг вещ-ва от 0 градусов до t

Слайд 13Решение: Пусть Q=Q(t) Рассмотрим малый отрезок [ t ; t+ ∆ t ]на

этом отрезке. ∆Q= c(t) ∆t c(t)= ∆ Q/ ∆ t При ∆t →0 lim ∆ Q/ ∆t=Q‘(t) ∆t →0 c(t)=Q‘ (t)
Решение: Пусть Q=Q(t) Рассмотрим малый отрезок [ t ; t+ ∆ t ]на этом отрезке. ∆Q= c(t)

Слайд 14Работа как функция времени

Работа как функция времени

Слайд 15Нам известна характеристика работы, определяющая ее скорость по времени ,- это

мощность . При работе с постоянной мощностью N работа за время ∆t равна N ∆t. Это выражение представляет собой дифференциал работы,т.е. ∆A= N(t) ∆ t и мощность выступает как производная работы по времени. N=A '(t)
Нам известна характеристика работы, определяющая ее скорость по времени ,- это мощность . При работе с постоянной

Слайд 16Напряженность

Е = ∆ф/ ∆ x
∆ф - разность потенциалов
∆x - отрезок перемещения
Таким образом ,напряженность электрического поля есть производная потенциала по координате.
Е = ф ‘ (х)

Напряженность              Е = ∆ф/

Слайд 17F ∆t = ∆(mѴ)
импульс силы равен изменению импульса, значит,можно считать

силу производной импульса по времени.
F=p ‘(t)
где p=mѴ – импульс тела
F ∆t = ∆(mѴ) импульс силы равен изменению импульса, значит,можно считать силу производной импульса по времени.

Слайд 18Литература : учебники физики 10-11 кл. ( авторов: Г. Я. Мякишев

и др. В.А. Касьянов и др. ) Над презентацией работала ученица 10”A”класса Небывайлова Алена 20.04.2011
Литература :  учебники физики 10-11 кл. ( авторов:  Г. Я. Мякишев и др.  В.А.

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть