Понижение степени.
= (1 + cos2x ) : 2
= (1 – cos 2x) : 2
Метод вспомогательного аргумента.
Проблемы ,возникающие при решении
тригонометрических уравнений
Уравнение .
Поделив уравнение на , получим , ,
При решении этой задачи обе части уравнения были поделены на .
Напомним, что при делении уравнения на выражение, содержащее неизвестное, могут быть потеряны корни. Поэтому нужно проверить, не являются ли корни уравнения корнями данного уравнения. Если , то из уравнения следует, что . Однако и
не могут одновременно равняться нулю, так как они связаны
равенством . Следовательно, при делении
уравнения , где , , на (или ) получаем уравнение, равносильное данному.
1) Делить на cosx нельзя, так как в условии не указано , что cosx не равен нулю. Но можно утверждать, что sinx не равен нулю, так как в противном случае cosx равен 0, что невозможно , так как sin²x-cos²x =1. Значит можно разделить на sin²x.
2) Решим уравнение разложением на множители:
cos²x + sinx cosx = 0,
сosx(cosx + sinx ) = 0,
сosx = 0 или cosx + sinx = 0,
tg x=-1,
Используя формулы sin x = 2 sin cos , cos x = cos2 - sin2 и
записывая правую часть уравнения в виде ,
получаем
Поделив это уравнение на ,
получим равносильное уравнение
Обозначая , получаем , откуда .
1)
2)
Ответ:
Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.
Email: Нажмите что бы посмотреть