Презентация, доклад к исследовательской работе Магические квадраты

Содержание

«Далёкое время  Застыло на камне,  А мы прикоснулись к нему.  Попала к нам в руки  Великая тайна,  Мы сбросим веков пелену». 

Слайд 1 Магические квадраты

Исследовательская работа (проект)

Выполнил: Зубаков Юрий, обучающийся 5 класса; Руководитель: Тляубаева З.И.,учитель математики

Магические квадраты

Слайд 2«Далёкое время  Застыло на камне,  А мы прикоснулись к нему.  Попала к нам в

руки  Великая тайна,  Мы сбросим веков пелену». 
«Далёкое время  Застыло на камне,  А мы прикоснулись к нему.  Попала к нам в руки  Великая тайна, 

Слайд 3”Я не знаю ничего более прекрасного в арифметике, чем эти числа, называемые

некото­рыми планетными, а другими - магическими»”

Пьер де Ферма

”Я не знаю ничего более прекрасного в арифметике, чем эти числа, называемые некото­рыми планетными, а другими - магическими»”

Слайд 8Гипотеза:
Изучение свойств магических квадратов даст возможность любому построить этот квадрат.

Гипотеза:Изучение свойств магических квадратов даст возможность любому построить этот квадрат.

Слайд 9Цели и задачи моей работы: 
изучить историю возникновения магических квадратов;
выяснить способы

их построения; 
научиться строить магические квадраты разного порядка разными способами;
опробовать найденные способы заполнения магических квадратов;
выяснить возможность применения магических квадратов в деятельности человека, а так же в науке.

Цели и задачи моей работы: изучить историю возникновения магических квадратов; выяснить способы их построения; научиться строить магические квадраты разного

Слайд 10Из истории развития магических квадратов
Магические квадраты возникли в глубокой древности в Китае.

Вероятно, самым «старым» из дошедших до нас магических квадратов является таблица Ло Шу (ок. 2200 г. до н. э.). Она имеет размер 3x3 и заполнена натуральными числами от 1 до 9.
Из истории развития магических квадратовМагические квадраты возникли в глубокой древности в Китае. Вероятно, самым «старым» из дошедших до нас

Слайд 12Из истории развития магических квадратов

Из истории развития магических квадратов

Слайд 13Магический квадрат-
это квадрат, сумма чисел которого
в каждом

горизонтальном ряду,
в каждом вертикальном ряду и
по каждой из диагоналей
одна и та же.

Магический квадрат-это квадрат, сумма чисел которого   в каждом горизонтальном ряду,   в каждом вертикальном

Слайд 14Магический квадрат 2х2
Магических квадратов 2х2 не существует.
Квадрат размером 2x2:

две строки,
два столбца и
две диагонали,
он должен был бы состоять из чисел 1, 2, 3,4
(1+2+3+4):2=5
Число 5 нужно представить в виде суммы двух данных
чисел шестью различными способами,
но это сделать невозможно: 5=1+4=2+3
















Магический квадрат 2х2Магических квадратов 2х2 не существует. Квадрат размером 2x2:   две строки,   два

Слайд 15Как ни расставляй числа в клетках таблицы, их сумма будет равна

5 либо в каждой строке, либо в обоих столбцах, либо по диагоналям, но никак не одновременно
Как ни расставляй числа в клетках таблицы,  их сумма будет равна 5

Слайд 16Магический квадрат 3х3 только один
Найдем сумму чисел от 1 до 9:

1+2+3+4+5+6+7+8+9=45
45:3=15
15=9+1+5=9+2+4=8+1+6=8+2+5=8+3+4=7+2+6=7+3+5=6+5+4
5 повторяется четыре раза,
на пересечении столбцов и строк, по два раза в сумме с четными и столько с нечетными числами, поэтому эти числа будут находиться противоположно друг другу

Магический квадрат 3х3 только одинНайдем сумму чисел от 1 до 9: 1+2+3+4+5+6+7+8+9=4545:3=1515=9+1+5=9+2+4=8+1+6=8+2+5=8+3+4=7+2+6=7+3+5=6+5+45 повторяется четыре раза, на пересечении

Слайд 171.Из магического квадрата можно получить новый, с увеличением всех чисел квадрата

на одно и то же число.(например на +2)
1.Из магического квадрата можно получить новый, с увеличением всех чисел квадрата на одно и то же число.(например

Слайд 182. Все остальные магические квадраты 3 х3 получаются из него либо

поворотом вокруг центра исходного квадрата на 90º или на 180°, либо отражением относительно одной из его осей симметрии, таких квадратов 8.
2. Все остальные магические квадраты 3 х3 получаются из него либо поворотом вокруг центра исходного квадрата на

Слайд 19 В магическом квадрате 4х4 сумма чисел по каждой строке, каждому

столбцу и двум диагоналям равна 34; сумма угловых чисел(1;4;16;13); сумма чисел центрального квадрата тоже равна 34;
В магическом квадрате 4х4 сумма чисел по каждой строке, каждому столбцу и двум диагоналям равна 34;

Слайд 20Сумма цифр в каждом квадрате 2х2 равна 34; в каждом столбце

имеется два рядом стоящих числа, сумма которых 13 и 21
Сумма цифр в каждом квадрате 2х2 равна 34; в каждом столбце имеется два рядом стоящих числа, сумма

Слайд 21 Это знаменитый магический квадрат Дюрера. Он изображен на гравюре великого немецкого

художника А.Дюрера «Меланхолия». Средние числа в нижней его строке изображают год создания гравюры -1514. Возможно, Дюрер знал этот квадрат. А может быть, начав именно с этих чисел, смог найти остальные методом подбора.
Это знаменитый магический квадрат Дюрера. Он изображен на гравюре великого немецкого художника А.Дюрера «Меланхолия». Средние

Слайд 22Магический квадрат 5х5
Суммы пятерок чисел на разломанных диагоналях равны постоянному числу

магического квадрата-65=
(1+2+3+4+…22+23+24+25):5.Такие квадраты называются совершенными.
Мы уже знаем, что квадрат останется совершенным, если подвергнуть его таким преобразованиям, как поворот и симметрия.
Магический квадрат 5х5Суммы пятерок чисел на разломанных диагоналях равны постоянному числу магического квадрата-65=(1+2+3+4+…22+23+24+25):5.Такие квадраты называются совершенными.Мы уже

Слайд 23Квадрат останется совершенным, после того как его верхнюю строку заменят нижней

или левый столбец перенести к правой стороне (либо наоборот)
Квадрат останется совершенным, после того как его верхнюю строку заменят нижней или левый столбец перенести к правой

Слайд 24 Если расположить рядом два одинаковых квадрата, так чтобы у них была

общая сторона, получится паркет, где числа в любой группе клеток образуют совершенный квадрат.
Если расположить рядом два одинаковых квадрата, так чтобы у них была общая сторона, получится паркет, где

Слайд 25Рассмотрим свойства магического квадрата 5х5, имеющий в центре число 13:
1.Четные

и нечетные числа расположены симметрично относительно центра и относительно осей симметрии
2.13-непарное число и совпадает с номером своей клетки.
3.Суммы пар чисел, занимающих центрально-симметричные клетки, одинаковы и два раза больше числа в центре-13.
.

Рассмотрим свойства магического квадрата 5х5, имеющий в центре число 13: 1.Четные и нечетные числа расположены симметрично относительно

Слайд 26Симметричность квадратов- что это такое?
Квадрат, в котором любые два числа, расположенные

симметрично относительно его центра, дают в сумме одно и то же число, называется симметричным.( Причем неважно, какого он порядка: четного или нечетного)
Симметричность квадратов- что это такое?Квадрат, в котором любые два числа, расположенные симметрично относительно его центра, дают в

Слайд 27Как построить магический квадрат нечетного порядка ( метод французского геометра 17

в. А.де ла Лубера)

В первой клетке среднего столбца пишем число 1. Ниже нижней клетки тоже пишем 1 и от него идя вверх и вправо числа 2 и3.
Когда дойдем до самого правого столбца это число 3 записываем слева от квадрат и пишем вправо вверх числа в порядке возрастания.
Доходим до 1 и опускаемся ниже на одну клетку вниз, записываем в ней следующее число и снова пишем числа в порядке возрастания по диагонали.
После чего процесс заполнения продолжается..

Как построить магический квадрат нечетного порядка ( метод французского геометра 17 в. А.де ла Лубера) В первой

Слайд 28Несложно составить магический квадрат 4х4: запишем все числа от 1 до

16 в квадрат по порядку и поменяем местами числа, стоящие в противоположных углах всего квадрата и внутреннего квадратика
Несложно составить магический квадрат 4х4: запишем все числа от 1 до 16 в квадрат по порядку и

Слайд 29 Метод террас (метод Баше) С четырёх сторон к исходному квадрату 3х3

добавляются террасы. В полученной фигуре располагают числа от 1 до 9 в естественном порядке косыми рядами снизу вверх. Числа, не попавшие в заштрихованный квадрат, сдвигаем на n=3 единицы: 1 – вниз, 3 – влево, 9 – вверх, 7 – вправо. Получаем: магический квадрат 3х3.
Метод террас (метод Баше) С четырёх сторон к исходному квадрату 3х3 добавляются террасы. В полученной фигуре

Слайд 30Магический квадрат Пифагора.
С помощью магического квадрата Пифагора можно познать характер человека,

степень отпущенного здоровья и его потенциальные возможности, раскрыть достоинства и недостатки и тем самым выявить, что следует предпринять для его совершенствования.
Магический квадрат Пифагора. С помощью магического квадрата Пифагора можно познать характер человека, степень отпущенного здоровья и его

Слайд 31Великий ученый Пифагор считал, что сущность человека заключается тоже в числе

– дате рождения


24.04.2004г.- дата моего рождения.
Сложим цифры дня, месяца и года рождения (без нулей): 2+4+4+2+4=16.
Складываем цифры результата: 1+6=7. Затем из первой суммы вычитаем удвоенную первую цифру дня рождения: 16-4=12. И вновь складываем цифры последнего числа: 1+2=3. Получили числа 24.04.2004,16,7,12,3 составляем магический квадрат так, чтобы все единицы этих чисел вошли в ячейку 1, все двойки – в ячейку 2
и т.д. Нули при этом во внимание не принимаются. В результате квадрат будет выглядеть следующим образом.

Великий ученый Пифагор считал, что сущность человека заключается тоже в числе – дате рождения24.04.2004г.- дата моего рождения.Сложим

Слайд 32Ячейка 1 – целеустремленность, воля, упорство, эгоизм.
1 – законченные эгоисты, стремятся

из любого положения извлечь максимальную выгоду.
11 – характер, близкий к эгоистическому.
111 – «золотая середина», Характер спокойный, покладистый, коммуникабельный.
1111 – люди сильного характера, волевые. Мужчины с таким характером подходят на роль военных – профессионалов, а женщины держат семью в кулаке.
11111 – диктатор, самодур.
111111 – человек жестокий, способный совершить невозможное; нередко попадает под влияние какой-то идеи.
Ячейка 1 – целеустремленность, воля, упорство, эгоизм.1 – законченные эгоисты, стремятся из любого положения извлечь максимальную выгоду.11

Слайд 33Ячейка 2 – биоэнергетика, эмоциональность, душевность, чувственность. Количество ячеек определяет уровень

биоэнергетики.
Двоек нет – открыт канал для интенсивного набора биоэнергетики. Эти люди воспитаны и благородны от природы.
2 – обычные в биоэнергетическом отношении люди. Такие люди очень чувствительны к изменениям в атмосфере.
22 – относительно большой запас биоэнергетики. Из таких людей получаются хорошие врачи, медсестры, санитары. В семье таких людей редко у кого бывают нервные стрессы.
222 – знак экстрасенса.
Ячейка 2 – биоэнергетика, эмоциональность, душевность, чувственность. Количество ячеек определяет уровень биоэнергетики.Двоек нет – открыт канал для

Слайд 34Ячейка 3 – точность, конкретность, организованность, аккуратность, пунктуальность, чистоплотность, скупость, наклонность

к  постоянному «восстановлению справедливости».
      Нарастание троек усиливает эти качества. С ними человеку есть смысл искать себя в науках, особенно точных. Перевес троек порождает педантов, людей в футляре.

      Ячейка 4 – здоровье. Это связано с энергетическим пространством, наработанным предками и защищающим человека. Отсутствие четверок свидетельствует о болезненности человека.
4 – здоровье среднее, необходимо закалять организм. Из видов спорта рекомендуется плавание и бег.
44 – здоровье крепкое.
444 и более – люди с очень крепким здоровьем.

Ячейка 3 – точность, конкретность, организованность, аккуратность, пунктуальность, чистоплотность, скупость, наклонность к  постоянному «восстановлению справедливости».     

Слайд 35     Ячейка 5 – интуиция, ясновидение, начинающее проявляться у таких

людей уже на уровне трех пятерок.
Пятерок нет – канал связи с космосом закрыт. Эти люди часто ошибаются.
5 – канал связи открыт. Эти люди могут правильно рассчитать ситуацию, извлечь из нее максимальную пользу.
55 – сильно развита интуиция. Когда видят «вещие сны», могут предугадывать ход событий. Подходящие для них профессии – юрист, следователь.
555 – почти ясновидящие.
5555 – ясновидящие.

.
Ячейка 7 – количество семерок определяет меру таланта.
7 – чем больше они работают, тем больше получают впоследствии.
77 – очень одаренные, музыкальные люди, обладают тонким художественным вкусом, могут иметь склонность к изобразительному искусству.
777 – эти люди, как правило, приходят на землю ненадолго. Они добры, безмятежны, болезненно воспринимают любую несправедливость. Они чувствительны, любят мечтать, не всегда чувствуют реальность.
7777 – знак Ангела. Люди с таким знаком умирают в младенчестве, а если и живут, то их жизни постоянно угрожает опасность.

     Ячейка 5 – интуиция, ясновидение, начинающее проявляться у таких людей уже на уровне трех пятерок.Пятерок

Слайд 36Ячейка 6 – заземленность, материальность, расчет, склонность к количественному освоению мира

и недоверие к качественным скачкам и тем более к чудесам духовного порядка.
Шестерок нет – этим людям необходим физический  труд, хотя они его, как правило, не любят. Они наделены неординарным воображением, фантазией, художественным вкусом. Тонкие натуры, они тем не менее способны на поступок.
6 – могут заниматься творчеством или точными науками, но физический труд является обязательным условием существования.
66 – люди очень заземлены, тянуться к физическому труду, хотя как раз для них он не обязателен; желательна умственная деятельность, либо занятия искусством.
666 – знак Сатаны, особый и зловещий знак. Эти люди обладают повышенным темпераментом, обаятельны, неизменно становятся в обществе центром внимания.
6666 – эти люди в своих предыдущих воплощениях набрали слишком много заземленности, они очень много трудились и не представляют свою жизнь без труда. Если в их квадрате есть девятки, им обязательно нужно заниматься умственной деятельностью, развивать интеллект, хотя бы получить высшее образование.
Ячейка 6 – заземленность, материальность, расчет, склонность к количественному освоению мира и недоверие к качественным скачкам и

Слайд 37Восьмерок нет – у этих людей почти полностью отсутствует чувство долга.
8

– натуры ответственные, добросовестные, точные.
88 – у этих людей развито чувство долга, их всегда отличает желание помочь другим, особенно слабым, больным, одиноким.
888 – знак великого долга, знак служения народу. Правитель с тремя восьмерками добивается выдающихся результатов.
8888 – эти люди обладают парапсихологическими способностями и исключительной восприимчивостью к точным наукам.

      Ячейка 9 – ум, мудрость.
Отсутствие девяток – свидетельство того, что умственные способности крайне ограничены.
9 – эти люди должны всю жизнь упорно трудиться, чтобы восполнить недостаток ума.
99 – эти люди умны от рождения. Учатся всегда неохотно, потому что знания даются им легко. Они наделены чувством юмора с ироничным оттенком, независимые.
999 – очень умны. К учению вообще не прикладывают никаких усилий. Прекрасные собеседники.
9999 – этим людям  открывается истина. Если у них к тому же развита интуиция, то они гарантированы от провала в любом из своих начинаний.

Восьмерок нет – у этих людей почти полностью отсутствует чувство долга.8 – натуры ответственные, добросовестные, точные.88 –

Слайд 38«В дни моей юности я в свободное время развлекался тем, что

составлял…магические квадраты» Б.Франклин.

В 16-17 вв. составлением магических квадратов занимались с таким же увлечением, с каким сегодня составляют кроссворды, даже такие математики, как Клод Гаспар Баше, Паскаль Блез, Михаэль Штифель
Паскаль Ферма, Гаусс Карл Фридрих.
Именно в одной из книг Баше магические квадраты предстали, как математическая забава.

«В дни моей юности я в свободное время развлекался тем, что составлял…магические квадраты» Б.Франклин.В 16-17 вв. составлением

Слайд 39Так же очень популярна японская головоломка судоку, прародителем которой можно считать

магический квадрат. Она помогает нам развивать логическое мышление и вычислительные навыки. В настоящее время много  газет печатают эти головоломки вместе с кроссвордами и другими логическими задачами.
Так же очень популярна японская головоломка судоку, прародителем которой можно считать магический квадрат. Она помогает нам развивать

Слайд 40Выводы:
В проекте рассмотрена история возникновения одного из интересных вопросов математики -

магических квадратов. Рассмотрены некоторые способы их построения; описаны некоторые их свойства и опробованы найденные способы заполнения магических квадратов.
Сегодня таинственностью незатейливых суммирующих закономерностей уже никого не удивишь. Человек научился строить магические квадраты самого разного порядка.
Магические квадраты могут рассматриваться не только в качестве задач из математических курьезов, сегодня уже известно об их применение в новейших цифровых технологиях, в программировании.
.

Выводы:В проекте рассмотрена история возникновения одного из интересных вопросов математики - магических квадратов. Рассмотрены некоторые способы их

Слайд 41Заключение
Математики всегда опережали время, в котором живут.
Они смотрели дальше, в

будущее. Многие открытия в прошлом веке не были признаны. Изучение магических квадратов всегда будет занятием интересным и актуальным. Поэтому считать, что данный проект совершенный было бы преждевременным

ЗаключениеМатематики всегда опережали время, в котором живут. Они смотрели дальше, в будущее. Многие открытия в прошлом веке

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть