Презентация, доклад по математике Понятие многогранника

Содержание

Теория многогранников, в частности выпуклых многогранников, — одна из самых увлекательных глав геометрии. Л. А.

Слайд 1Понятие многогранника. Правильные многогранники.
Урок геометрии в 10 классе
Выполнила: Голенищева Зоя Тимофеевна,
МБОУ

СОШ №19 г. Владивостока
Понятие многогранника. Правильные многогранники.Урок геометрии в 10 классеВыполнила: Голенищева Зоя Тимофеевна,МБОУ СОШ №19 г. Владивостока

Слайд 2Теория многогранников, в частности выпуклых многогранников, — одна из самых увлекательных глав

геометрии. Л. А. Люстерник
Теория многогранников, в частности выпуклых многогранников, — одна из самых увлекательных глав геометрии.

Слайд 3
Стороны граней называются ребрами многогранника
Многогранник - геометрическое тело, ограниченное со всех

сторон плоскими многоугольниками, называемыми гранями.


Концы ребер - вершинами

Стороны граней называются ребрами многогранникаМногогранник - геометрическое тело, ограниченное со всех сторон плоскими многоугольниками, называемыми гранями. Концы

Слайд 4По числу граней различают четырехгранники, пятигранники и т. д.

По числу граней различают четырехгранники, пятигранники и т. д.

Слайд 5
Невыпуклый многогранник

Многогранник называется выпуклым, если он весь расположен по одну сторону

от плоскости каждой из его граней.
Невыпуклый многогранникМногогранник называется выпуклым, если он весь расположен по одну сторону от плоскости каждой из его граней.

Слайд 6
Правильным называется многогранник, у которого все грани

являются правильными многоугольниками, и все многогранные углы при вершинах равны.

Приведён пример правильного многогранника (икосаэдр), его гранями являются правильные (равносторонние) треугольники.

Правильным называется многогранник, у которого все грани являются правильными многоугольниками, и все многогранные

Слайд 7 В каждой вершине многогранника должно сходиться

столько правильных n – угольников, чтобы сумма их углов была меньше 3600. Т.е должна выполняться формула βk < 3600 ( β-градусная мера угла многоугольника, являющегося гранью многогранника, k – число многоугольников, сходящихся в одной вершине многогранника.)
В каждой вершине многогранника должно сходиться столько правильных n – угольников, чтобы

Слайд 8 Правильный многогранник, у которого грани

правильные треугольники и в каждой вершине сходится по три ребра и по три грани. У тетраэдра: 4 грани, четыре вершины и 6 ребер.

Тетраэдр

Правильный многогранник, у которого грани правильные треугольники и в каждой вершине

Слайд 9 Правильный многогранник, у которого грани-

правильные треугольники и в каждой вершине сходится по четыре ребра и по четыре грани. У октаэдра: 8 граней, 6 вершин и 12 ребер

Октаэдр

Правильный многогранник, у которого грани- правильные треугольники и в каждой вершине

Слайд 10 Правильный многогранник, у которого грани –

квадраты и в каждой вершине сходится по три ребра и три грани. У него: 6 граней, 8 вершин и 12 ребер.

Куб


Правильный многогранник, у которого грани – квадраты и в каждой вершине сходится

Слайд 11Додекаэдр
Правильный многогранник, у которого грани правильные пятиугольники и в каждой

вершине сходится по три ребра и три грани. У додекаэдра:12 граней, 20 вершин и 30 ребер.
Додекаэдр Правильный многогранник, у которого грани правильные пятиугольники и в каждой вершине сходится по три ребра и

Слайд 12Элементы симметрии правильных многогранников

Элементы симметрии правильных многогранников

Слайд 14 Все типы правильных многогранников были известны

в Древней Греции – именно им посвящена завершающая, XIII книга «Начал» Евклида.

Немного истории

Все типы правильных многогранников были известны в Древней Греции – именно им

Слайд 15Правильные многогранники называют также «платоновыми телами» - они занимали видное место

в идеалистической картине мира древнегреческого философа Платона.

Додекаэдр символизировал всё мироздание, почитался главнейшим. Уже по латыни в средние века его стали называть «пятая сущность» или guinta essentia, «квинта эссенциа», отсюда происходит вполне современное слово «квинтэссенция», означающее всё самое главное, основное, истинную сущность чего-либо.

Правильные многогранники называют также «платоновыми телами» - они занимали видное место в идеалистической картине мира древнегреческого философа

Слайд 16Олицетворение многогранников

Олицетворение многогранников

Слайд 17Звездчатые правильные многогранники

Звездчатые правильные многогранники

Слайд 18.
Существует семейство тел, родственных платоновым - это полуправильные выпуклые многогранники,

или Архимедовы тела. У них все многогранные углы равны, все грани - правильные многоугольники, но нескольких различных типов.

. Существует семейство тел, родственных платоновым - это полуправильные выпуклые многогранники, или Архимедовы тела. У них все

Слайд 19Если наблюдать и рассматривать многогранные формы, то можно не только почувствовать

их красоту, но и обнаружить некоторые закономерности, возможно, имеющие прикладное значение.

Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие — в виде вирусов, простейших микроорганизмов.

Кристаллы — тела, имеющие многогранную форму. Вот один из примеров таких тел: кристалл пирита (сернистый колчедан FeS) — природная модель додекаэдра. Пирит (от греч. “пир” — огонь) — сернистое железо или серный колчедан, наиболее распространенный минерал из группы сульфидов. Размеры кристаллов пирита часто достигают нескольких сантиметров и являются хорошим коллекционным материалом. От других подобных ему минералов отличается твердостью: царапает стекло.

Если наблюдать и рассматривать многогранные формы, то можно не только почувствовать их красоту, но и обнаружить некоторые

Слайд 20Замечено, что наша матушка-Земля последовательно проходит эволюцию правильных объемных фигур. Существует

много данных о сравнении структур и процессов Земли с вышеуказанными фигурами. Полагают, что четырем геологическим эрам Земли соответствуют четыре силовых каркаса правильных Платоновских тел: Протозою - тетраэдр (четыре плиты), Палеозою - гексаэдр (шесть плит) ,Мезозою - октаэдр (восемь плит) ,Кайнозою - додекаэдр (двенадцать плит).

Существует гипотеза, по которой ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. «Лучи» этого кристалла, а точнее его силовое поле, обусловливают икосаэдро-додекаэдрическую структуру Земли, проявляющуюся в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра. 62 их вершины и середины ребер, называемые узлами, оказывается, обладают рядом специфичecких свойств, позволяющих объяснить многие непонятные явления.

Замечено, что наша матушка-Земля последовательно проходит эволюцию правильных объемных фигур. Существует много данных о сравнении структур и

Слайд 21Если нанести на глобус очаги наиболее крупных и примечательных культур и

цивилизаций Древнего мира, можно заметить закономерность в их расположении относительно географических полюсов и экватора планеты. Многие залежи полезных ископаемых тянутся вдоль икосаэдрово-додекаэдровой сетки. Еще более удивительные вещи происходят в местах пересечения этих ребер: тут располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана, здесь шотландское озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой красивой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.
Если нанести на глобус очаги наиболее крупных и примечательных культур и цивилизаций Древнего мира, можно заметить закономерность

Слайд 23Додекаэдрическая структура, по мнению Д. Винтера (американского математика), присуща не только

энергетическому каркасу Земли, но и строению живого вещества.

В процессе деления яйцеклетки сначала образуется тетраэдр из четырех клеток, затем октаэдр, куб и, наконец, додекаэдро-икосаэдрическая структура гаструлы. И наконец, самое, пожалуй, главное – структура ДНК генетического кода жизни – представляет собой четырехмерную развертку (по оси времени) вращающегося додекаэдра! Таким образом, оказывается, что вся Вселенная – от Метагалактики и до живой клетки – построена по одному принципу – бесконечно вписываемых друг в друга додекаэдра и икосаэдра, находящихся между собой в пропорции золотого сечения!

Додекаэдрическая структура, по мнению Д. Винтера (американского математика), присуща не только энергетическому каркасу Земли, но и строению

Слайд 24Впрочем, многогранники - отнюдь не только объект научных исследований. Их формы

- завершенные и причудливые, широко используются в декоративном искусстве.
Впрочем, многогранники - отнюдь не только объект научных исследований. Их формы - завершенные и причудливые, широко используются

Слайд 25Ярчайшим примером художественного изображения многогранников в XX веке являются, конечно, графические

фантазии Маурица Корнилиса Эшера (1898-1972), голландского художника, родившегося в Леувардене.

Мауриц Эшер в своих рисунках как бы открыл и интуитивно проиллюстрировал законы сочетания элементов симметрии, т.е. те законы, которые властвуют над кристаллами, определяя и их внешнюю форму, и их атомную структуру, и их физические свойства.

Математик, так же как и художник или поэт, создает узоры, и если
его узоры более устойчивы, то лишь потому, что они составлены из идей.

Ярчайшим примером художественного изображения многогранников в XX веке являются, конечно, графические фантазии Маурица Корнилиса Эшера (1898-1972), голландского

Слайд 26Доклад окончен. Спасибо, что не спали ☺

Доклад окончен. Спасибо, что не спали  ☺

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть