Презентация, доклад по геометрии на тему: Повторение главы 1. Параллельность прямых, прямой и плоскости.

Содержание

Аксиомы стереометрииА1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только однаАВС

Слайд 1Стереометрия
Раздел геометрии, в котором изучаются свойства фигур в пространстве
Основные фигуры в

пространстве:

А

Точка

а

Прямая

Плоскость

СтереометрияРаздел геометрии, в котором изучаются свойства фигур в пространствеОсновные фигуры в пространстве:АТочкааПрямаяПлоскость

Слайд 2Аксиомы стереометрии
А1. Через любые три точки, не лежащие на одной прямой,

проходит плоскость, и притом только одна


А

В

С

Аксиомы стереометрииА1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только однаАВС

Слайд 3Аксиомы стереометрии
А2. Если две точки прямой лежат в плоскости, то все

точки прямой лежат в этой плоскости


А

В

Аксиомы стереометрииА2. Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскостиАВ

Слайд 4Аксиомы стереометрии
А3. Если две плоскости имеют общую точку, то они имеют

общую прямую, на которой лежат все общие точки этих плоскостей



Аксиомы стереометрииА3. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все

Слайд 5Взаимное расположение прямой и плоскости
Прямая лежит в плоскости
Прямая пересекает плоскость
Прямая не

пересекает плоскость

Множество общих точек

Единственная общая точка

Нет общих точек


а


а

М

g

а

а  

а ∩  = М

а ⊄ 

Взаимное расположение прямой и плоскостиПрямая лежит в плоскостиПрямая пересекает плоскостьПрямая не пересекает плоскостьМножество общих точекЕдинственная общая точкаНет

Слайд 6Прочитайте чертеж
B
c
b
a

Прочитайте чертежBcba

Слайд 7Способы задания плоскостей


А
a
b
a

Способы задания плоскостейАaba

Слайд 8Взаимное расположение прямых
1. Совпадают
b
2. Пересекаются
а
а
а
а
b
b
b
М
аb=M
ab
Признаки!
3. Не пересекаются, лежат в одной плоскости
4.

Не пересекаются,
лежат в разных плоскостях

А и b скрещивающиеся
Признак!





Взаимное расположение прямых1. Совпадаютb2. ПересекаютсяааааbbbМаb=MabПризнаки!3. Не пересекаются, лежат в одной плоскости4. Не пересекаются, лежат в разных плоскостяхА

Слайд 9Вопрос №1. Прямые а и в лежат в параллельных плоскостях.

Могут ли эти прямые быть скрещивающимися и параллельными?

a

b

Вопрос №1.  Прямые а и в лежат в параллельных плоскостях. Могут ли эти прямые быть скрещивающимися

Слайд 10Важные теоремы, связанные
с параллельностью прямой и плоскости


c
т
а
а 
=т

ат
1)
2)


аb
а
b
=с
са
сb
а
b
а
3)


c
т
т
т
=с
тс

Важные теоремы, связанныес параллельностью прямой и плоскостиcтаа =тат1)2)аbаb=ссасbаbа3)cттт=стс

Слайд 11
Взаимное расположение плоскостей
1)
2)



М
т
3)


Определение. Две плоскости называются параллельными, если они не пересекаются

Взаимное расположение плоскостей1)2)Мт3)Определение. Две плоскости называются параллельными, если они не пересекаются

Слайд 12№1. Параллельные плоскости пересекают сторону АВ угла ВАС в точках А1

и А2 , а сторону АС этого угла соответственно в точках В1 и В2. Найдите А2В2, если А1В1 = 6 см
№1. Параллельные плоскости пересекают сторону АВ угла ВАС в точках А1 и А2 , а сторону АС

Слайд 13Повторить и выучить:
Аксиомы стереометрии
Следствия из аксиом
Способы задания плоскости
Определение параллельных прямых в

пространстве
Определение и признак параллельности прямой и плоскости
Два утверждения вытекающие из признака параллельности прямой и плоскости
Определение и признак скрещивающихся прямых
Тему: углы с соноправленными сторонами (как находить углы между скрещивающимися прямыми )
Определение и признак параллельности плоскостей
Свойства параллельных плоскостей
Сечения и свойства параллелепипеда
Повторить и выучить:Аксиомы стереометрииСледствия из аксиомСпособы задания плоскостиОпределение параллельных прямых в пространстве Определение и признак параллельности прямой

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть