Презентация, доклад на тему Подготовка к ОГЭ модуль алгебра , геометрия 2 часть

Содержание

Модуль «Алгебра»

Слайд 1Подготовка к ОГЭ
Автор: учитель математики
МОБУ «Троицкая СОШ»
Шуринова Екатерина Викторовна


План
№23

(1,2)
№24 (1,2)
№25 (1,2)
№26 (1,2)
Подготовка к ОГЭ Автор: учитель математики МОБУ «Троицкая СОШ»Шуринова Екатерина ВикторовнаПлан№23 (1,2)№24 (1,2)№25 (1,2)№26 (1,2)

Слайд 2Модуль «Алгебра»

Модуль «Алгебра»

Слайд 3Задание 23 
Постройте график функции  и определите, при каких значениях параметра  прямая  имеет с графиком

ровно одну общую точку.
Задание 23 Постройте график функции  и определите, при каких значениях параметра  прямая  имеет с графиком ровно одну общую точку.

Слайд 4Справочный материал

Справочный материал

Слайд 6Задание 23
Постройте график функции  и определите, при каких значениях  прямая  имеет с графиком ровно

одну общую точку.
Задание 23Постройте график функции  и определите, при каких значениях  прямая  имеет с графиком ровно одну общую точку.

Слайд 9Модуль «Геометрия»

Модуль «Геометрия»

Слайд 10Задание 24
В треугольнике АВС углы А и С равны 20° и 60° соответственно. Найдите угол между высотой ВН и

биссектрисой BD.

Задание 24В треугольнике АВС углы А и С равны 20° и 60° соответственно. Найдите угол между высотой ВН и биссектрисой BD.

Слайд 11Справочный материал

Справочный материал

Слайд 12Задание 24 
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно. Найдите BN, если MN = 13, AC = 65, NC = 28.

Задание 24 Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно. Найдите BN, если MN = 13, AC = 65, NC = 28.

Слайд 13Справочный материал

Справочный материал

Слайд 14Задание 25 
Высоты AA1 и BB1 остроугольного треугольника ABC пересекаются в точке E. Докажите, что углы AA1B1 и ABB1равны.

Задание 25 Высоты AA1 и BB1 остроугольного треугольника ABC пересекаются в точке E. Докажите, что углы AA1B1 и ABB1равны.

Слайд 15Справочный материал

Справочный материал

Слайд 16Задание 25
Докажите, что биссектрисы углов при основании равнобедренного треугольника равны.

Задание 25Докажите, что биссектрисы углов при основании равнобедренного треугольника равны.

Слайд 17Справочный материал

Справочный материал

Слайд 18Задание 26
Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P.

Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.
Задание 26Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.

Слайд 19Справочный материал

Справочный материал

Слайд 21Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.

Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.

Слайд 22Проведём МТ

Проведём МТ

Слайд 28треугольники имеют одну высоту, проведённую из вершины С, и равные основания

треугольники имеют одну высоту, проведённую из вершины С, и равные основания

Слайд 29Площадь КРСМ - ?

Площадь КРСМ - ?

Слайд 32Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.

Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.

Слайд 33Задание 26
Площадь треугольника ABC равна 80. Биссектриса AD пересекает медиану BK в точке E, при этом BD:CD=1:3. Найдите площадь

четырехугольника EDCK.
Задание 26Площадь треугольника ABC равна 80. Биссектриса AD пересекает медиану BK в точке E, при этом BD:CD=1:3. Найдите площадь четырехугольника EDCK.

Слайд 34Справочный материал

Справочный материал

Слайд 36Найдите отношение площадей АСД и АВД

Найдите отношение  площадей  АСД и АВД

Слайд 37Найдите отношение площадей АКЕ и АЕВ

Найдите отношение  площадей АКЕ и АЕВ

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть