Слайд 1Презентация на тему:
«Дисперсия световых волн»
Слайд 2Показатель преломления не зависит от угла падения светового пучка, но он
зависит от его цвета. Это было открыто Ньютоном.
Слайд 3Биография
Ньютон Исаак (1643 – 1727), английский ученый, заложивший основы классической
физики. Сформулировал основные законы классической механики, в том числе открыл закон всемирного тяготения, дал их математическое обоснование, для чего разработал (независимо от Г. Лейбница) дифференциальное и интегральное исчисления. Заложил основы небесной механики, построил зеркальный телескоп. Открыл и исследовал многие оптические явления и сделал попытку объяснить их с единой точки зрения. Работы Ньютона намного опередили общий научный уровень того времени и были малопонятны современникам. Был директором Монетного двора, наладил монетное дело в Англии. Известный алхимик, занимался хронологией древних царств. Ряд теологических трудов посвятил толкованию библейских пророчеств (большая часть не опубликована).
Слайд 4Дисперсия света
Преломление светового луча в призме
Проходя через призму, луч солнечного света
не только преломляется, но и разлагается на различные цвета. Рассмотрим преломление луча в призме. Строго говоря, это означает, что световой луч предполагается здесь одноцветным, или, как принято называть в физике, монохроматическим
(от греческих «моно» — один и «хромое»— цвет).
Слайд 7Открытие явления дисперсии
Дисперсия света. В яркий солнечный день закроем окно в
комнате плотной шторой, в которой сделаем маленькое отверстие. Через это отверстие будет проникать в комнату узкий солнечный луч, образующий на противоположной стене светлое пятно. Если на пути луча поставить
стеклянную призму, то пятно на стене превратится в разноцветную полоску, в которой будут представлены все цвета радуги—от фиолетового до красного (рис. 2: Ф – фиолетовый, С — синий, Г — голубой, 3 — зеленый, Ж —желтый, О —оранжевый, К — красный).
Дисперсия света – зависимость показателя преломления n вещества от частоты f (длины волны λ) света или зависимость фазовой скорости световых волн от частоты. Следствие дисперсии света - разложение в спектр пучка белого света при прохождении сквозь призму. Изучение этого спектра привело И. Ньютона (1672) к открытию дисперсии света. Для веществ, прозрачных в данной области спектра, n увеличивается с увеличением f (уменьшением λ), чему и соответствует распределение цветов в спектре, такая зависимость n от f называется нормальной дисперсией света. Разноцветная полоска есть солнечный спектр.
Слайд 9Первые опыты с призмами. Представления о причинах возникновения цветов до Ньютона
Описанный
опыт является, по сути дела, древним. Уже в I в. н. э. было известно, что большие монокристаллы (шестиугольные призмы, изготовленные самой природой) обладают свойством разлагать свет на цвета. Первые исследования дисперсии света в опытах со стеклянной треугольной призмой выполнил англичанин Хариот (1560—1621). Независимо от него аналогичные опыты проделал известный чешский естествоиспытатель Марци (1595 — 1667), который установил, что каждому цвету соответствует свой угол преломления. Однако до Ньютона подобные наблюдения не подвергались достаточно серьезному анализу, а делавшиеся на их основе выводы не перепроверялись дополнительными экспериментами. В результате в науке тех времен долго господствовали представления, неправильно объяснявшие возникновение цветов.
Говоря об этих представлениях, следует начать с теории цветов Аристотеля (IV в. до н. э.). Аристотель утверждал, что различие в цвете определяется различием в количестве темноты, «примешиваемой» к солнечному (белому) свету. Фиолетовый цвет, по Аристотелю, возникает при наибольшем добавлении темноты к свету, а красный — при наименьшем. Таким образом, цвета радуги — это сложные цвета, а основным является белый свет.
Слайд 11РАДУГА
Радуга — это оптическое явление, связанное с преломлением световых лучей
на многочисленных капельках дождя. Однако далеко не все знают, как именно преломление света на капельках дождя приводит к возникновению на небосводе гигантской многоцветной дуги.
Радуга глазами внимательного наблюдателя. Прежде всего заметим, что радуга может наблюдаться только в стороне, противоположной Солнцу. Если встать лицом к радуге, то Солнце окажется сзади. Радуга возникает, когда Солнце освещает завесу дождя. Наблюдаемые в радуге цвета чередуются в такой же последовательности, как и в спектре, получаемом при пропускании пучка солнечных лучей через призму. При этом внутренняя (обращенная к поверхности Земли) крайняя область радуги окрашена в фиолетовый цвет, а внешняя крайняя область — в красный.
Для наблюдателя, находящегося на относительно ровной земной поверхности, радуга появляется при условии, что угловая высота Солнца над горизонтом не превышает примерно 42°. Чем ниже Солнце, тем больше угловая высота вершины радуги и тем, следовательно, больше наблюдаемый участок радуги. Вторичная радуга может наблюдаться, если высота Солнца над горизонтом не превышает примерно 52.
Радуга может рассматриваться как гигантское колесо, которое как на ось надето на воображаемую прямую линию, проходящую через Солнце и наблюдателя
Слайд 13Явление дисперсии, открытое Ньютоном, - первый шаг к пониманию природы цвета.
Глубина понимания дисперсии пришла после того, как была выяснена зависимость цвета от частоты (или длины) световой волны.