Основной закон радиоактивного распада
Удельная энергия связи (не считая самых легких ядер) примерно постоянна и равна 8МэВ/нуклон. Максимальную удельную энергию связи имеют элементы с массовыми числами от 50 до 60.
Уран.
Природный уран состоит из смеси 2-х изотопов: на 99, 28% из урана-238, и на 0,72 % -из урана -235. Период полураспада урана-238 4,5 млрд. лет
Больше всего урана в граните - 25г на каждую тонну. Количество урана в слое литосферы толщиной 20 км оценивается в 1,3·1014 т. Содержание в органах и тканях человека и животных не превышает 10-7 г
Al + n → Na + He
27
13
1
0
24
11
4
2
1
0
Rb
94
α -излучение
γ-излучение
При делении 1 ядра урана - 235 выделяется энергии Q ≈ 200МэВ = 3,2*10-11 Дж –это в десятки миллионов раз превосходит энергию химических превращений. При полном делении всех ядер, содержащихся в 1 г урана, выделяется такая же энергия, как и при сгорании 3 т угля или 2,5 т нефти
Деление ядра - ядерная реакция разделения тяжелого ядра, возбужденного захватом нейтрона, на две приблизительно равные части, называемые продуктом деления (осколками).
и гамма излучение
Процесс деления ядер урана
Н. Бор предложил капельную модель ядра атома. Она дает представление о ядре как о положительно заряженной капле жидкости.
Георгий Николаевич
Флеров
1913–1990
Константин Антонович
Петржак
1907 - 1998
Серия радиоактивных превращений урана
Захватывая свободный нейтрон, ядро изотопа урана U-235 делится , в результате освобождаются 2-3 нейтрона, которые могут вызвать новые акты деления ядер. Так была найдена "спичка" для поджигания атомного огня.
Любой из 3-х нейтронов второго поколения, вылетевших из ядра урана -235, может в свою очередь вызвать дальнейшее деление 2-3 ядер. Четыре образовавшихся нейтрона третьего поколения могут разделить 4 ядра урана. В результате число делящихся ядер начинает лавинообразно возрастать.
Цепная ядерная, протекает самопроизвольно, без дополнительного подвода энергии извне.
Наиболее эффективное деление ядер урана -235 происходит под действием медленных нейтронов, а вторичные нейтроны – быстрые. Поэтому необходимо замедлять эти нейтроны в 10 миллионов раз. Замедлителем может служить обычная и тяжелая вода, графит.
Возможность протекания цепной реакции определяется массой урана, количеством примесей в нем, наличием оболочки и замедлителя.
- число нейтронов одного поколения
- число нейтронов предыдущего поколения
Если k < 1, реакция быстро затухает,
Если k = 1, то реакция протекает с постоянной
интенсивностью (управляемая в ядерных реакторах),
Если k >1, то реакция развивается лавинно
(неуправляемая) и приводит к ядерному взрыву
К можно изменять, вводя в активную зону стержни из бора или кадмия, которые активно поглощают нейтроны.
Если соединить эти части, то начнется цепная реакция, протекающая миллионные доли секунды, - произойдет атомный взрыв. Для этого части заряда соединяют с помощью обычного взрывчатого вещества. Соединение происходит либо «выстреливанием» навстречу друг другу двух блоков делящегося вещества докритической массы. Вторая схема подразумевает получение сверхкритического состояния путём обжатия делящегося материала сфокусированной ударной волной, создаваемой взрывом обычной химической взрывчатки, которой для фокусировки придаётся весьма сложная форма и подрыв производится одновременно в нескольких точках.
4. Проникающая радиация.
Проникающая радиация – это потоки гамма-лучей и нейтронов, испускаемых в момент атомного взрыва. Основным источником проникающей радиации являются осколки деления вещества заряда( 5 % энергии)
5. Электромагнитный импульс (2-3 %энергии)
Плутониевое ядерное устройство, установленное на стальной башне, было успешно взорвано Энергия взрыва приблизительно соответствовала 20 кт тротила. При взрыве образовалось грибовидное облако, башня обратилась в пар, а характерный для пустыни грунт под ней расплавился, превратившись в сильно радиоактивное стеклообразное вещество.(Через 16 лет после взрыва уровень радиоактивности в этом месте все еще был выше нормы.)
В 1945 г. были сброшены бомбы на города Хиросима и Нагасаки
Боевой железнодорожный ракетный комплекс
БЖРК 15П961 «Молодец»
c межконтинентальной ядерной ракетой.
Первый ядерный реактор: США, 1942 г., Э.Ферми, деление ядер урана.
В России: 25 декабря 1946 г., И.В.Курчатов
Первая в мире АЭС опытно-промышленного назначения мощностью 5 МВт была пущена в СССР 27 июня 1954 г. в г. Обнинске. За рубежом первая АЭС промышленного назначения мощностью 46 МВт была введена в эксплуатацию в 1956 в Колдер-Холле (Англия).
Реактор на тепловых нейтронах
1 — управляющий стержень;
2 — биологическая защита;
3 — теплоизоляция;
4 — замедлитель;
5 — ядерное топливо;
6 — теплоноситель.
По центру каждого блока
сквозь всю колонну проходят сквозные отверстия диаметром 114 мм для размещения тепловыделяющих кассет, датчиков и стержней СУЗ, циркуляции теплоносителя. Общее число технологических каналов в активной зоне 1693. Внутри большинства технологических каналов находятся. По периферии активной зоны, а также сверху и снизу расположен боковой отражатель - сплошная графитовая кладка толщиной 0.65 метра.
Рудник
Пр-во урановых
концентратов
Производство UF6
Аффинаж и производство UF4
Безопасность реактора(возможность аварии с разгоном реактора, радиоактивные выбросы в окружающую среду )
Радиоактивные отходы (утилизация отработанного топлива)
Особенности ремонта
Сложность ликвидации ядерного энергетического объекта(из-за ограниченности срока службы АЭС)
Высокая квалификация и ответственность кадров
Доступность для терроризма и шантажа с катастрофическими последствиями
Дорого стоит добыча топлива
ПРЕИМУЩЕСТВА
ПРОБЛЕМЫ
ЭГП – атомный энергетический
графитовый реактор
с перегревом пара
Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.
Email: Нажмите что бы посмотреть