Презентация, доклад на тему Биогеохимические циклы. Круговорот фосфора- основа целостности биосферы.

Содержание

Биогеохимические циклыВ экосистемах очень важна роль биогеохимических циклов. Биогенные элементы – C, O2, N2, P, S, CO2, H2O и другие – в отличие от энергии удерживаются в экосистемах и совершают непрерывный круговорот из внешней среды в

Слайд 1Биогеохимические циклы. Круговорот фосфора- основа целостности биосферы
Подготовила: Коваль Т.А.

Биогеохимические циклы. Круговорот фосфора- основа целостности биосферыПодготовила: Коваль Т.А.

Слайд 2Биогеохимические циклы
В экосистемах очень важна роль биогеохимических циклов. Биогенные элементы –

C, O2, N2, P, S, CO2, H2O и другие – в отличие от энергии удерживаются в экосистемах и совершают непрерывный круговорот из внешней среды в организмы и обратно во внешнюю среду. Эти замкнутые пути называют биогеохимическими циклами.

Биогеохимические циклыВ экосистемах очень важна роль биогеохимических циклов. Биогенные элементы – C, O2, N2, P, S, CO2,

Слайд 3В каждом круговороте различают два фонда: резервный, включающий большую массу движущихся

веществ, в основном небиологических компонентов, и подвижный, или обменный, фонд – по характеру более активный, но менее продолжительный, отличительной особенностью которого является быстрый обмен между организмами и их непосредственным окружением.

Биогеохимические циклы можно подразделять на два типа: 1) круговорот газообразных веществ с резервным фондом в атмосфере и гидросфере (океан); 2) осадочный цикл с резервным фондом в земной коре.

Из 90 с лишним элементом, встречающихся в природе, 30-40 необходимы для живых организмов. Человек уникален не только тем, что его организм нуждается в 40 элементах, но и тем, что в своей деятельности использует почти все другие имеющиеся в природе элементы.

В каждом круговороте различают два фонда: резервный, включающий большую массу движущихся веществ, в основном небиологических компонентов, и

Слайд 4Циклы газообразных веществ.
Биогеохимические циклы углерода, азота и кислорода - примеры наиболее

важных газообразных циклов биогенных веществ. Углерод поступает в биологический круговорот в виде СО2, который усваивается растениями, а азот - в виде газообразного азота N2, который используется азотфиксирующими организмами. Доступные запасы этих газов содержатся в атмосфере.

Циклы газообразных веществ. Биогеохимические циклы углерода, азота и кислорода - примеры наиболее важных газообразных циклов биогенных веществ.

Слайд 5Биогеохимический цикл кислорода
Кислород – самый распространенный элемент. В настоящее время его

количество в атмосфере составляет 1,2х1015 тонн. Масштабы продуцирования кислорода зелеными растениями таковы, что это количество могло быть удвоено за 4000 лет. Но этого не происходит, так как в течение года разлагается примерно такое же количество органического вещества, которое образуется в результате фотосинтеза. При этом поглощается почти весь выделившийся кислород. Но благодаря незамкнутости биогеохимического круговорота в связи с тем, что часть органического вещества сохраняется и свободный кислород постепенно накапливается в атмосфере.
Главная «фабрика» по производству кислорода на нашей планете – зеленые растения, хотя в земной коре также протекают разнообразные химические реакции в результате которых выделяется свободный кислород.
Еще один миграционный цикл свободного кислорода связан с массобменом в системе природные воды – тропосфера. В воде океана находится от 3х109 до 10х109 м3растворенного кислорода. Холодная вода высоких широт поглощает кислород, а, поступая с океаническими течениями в тропики – выделяет его в атмосферу. Поглощение и выделение кислорода происходит и при смене сезонов года, сопровождающихся изменением температуры воды.
Кислород расходуется в громадном количестве окислительных реакций, большинство из которых имеет биохимическую природу. В этих реакциях высвобождается энергия, поглощенная в ходе фотосинтеза. В почвах, илах, водоносных горизонтах развиваются микроорганизмы, использующие кислород для окисления органических соединений. Запасы кислорода на нашей планете огромны. Он входит в состав кристаллических решеток минералов и высвобождается из них живым веществом.

Биогеохимический цикл кислорода Кислород – самый распространенный элемент. В настоящее время его количество в атмосфере составляет 1,2х1015 тонн.

Слайд 6
Схема биогеохимического цикла кислорода



















Общая схема круговорота кислорода в биосфере складывается из

двух ветвей:
образование свободного кислорода при фотосинтезе;
поглощение кислорода в окислительных реакциях.


В современных условиях установившиеся в биосфере потоки кислорода нарушаются техногенными миграциями. Многие химические соединения, сбрасываемые промышленными предприятиями в природные воды, связывают растворенный в воде кислород. В атмосферу выбрасывается все большее количество углекислого газа и различных аэрозолей. Загрязнение почв и, особенно, вырубка лесов, а также опустынивание земель на огромных территориях уменьшают производство кислорода растениями суши. Огромное количество атмосферного кислорода расходуется при сжигании топлива. В некоторых промышленно развитых странах кислорода сжигают больше, чем образуется его за счет фотосинтеза.

Схема биогеохимического цикла кислородаОбщая схема круговорота кислорода в биосфере складывается из двух ветвей:образование свободного кислорода при фотосинтезе;поглощение

Слайд 7Биогеохимический цикл азота.
Азот составляет около 80% атмосферного воздуха и является крупнейшим

резервуаром и предохранительным клапаном атмосферы.
Главным постановщиком азота в биосферу являются недра Земли, основным накопителем – атмосфера, точнее – тропосфера. Наряду с N2 в атмосферу систематически поступают другие газообразные соединения азота: NН3-, N2О, NО-, NО2-. Наряду с оксидами азота в атмосфере присутствует аммиак. В кислородсодержащей атмосфере он реагирует с оксидами серы и образует кислый сульфат аммония NH4HSO4. Это соединение, так же как нитраты и нитриты, легко вымываются атмосферными осадками.
Основная часть этого элемента, находящаяся в атмосфере в химически неактивной форме N2 , недоступна для главных продуцентов - зеленых растений суши. Но химическая неактивность молекулярного азота не означает его геохимической стабильности. Существуют некоторые виды бактерий, способные активизировать молекулярный азот и связывать его в химические соединения. Этот процесс получил название Фиксации азота. Промышленная фиксация азота идет в присутствии катализаторов при t~500°С и давлении ~300 атм.
Биогеохимический цикл азота.Азот составляет около 80% атмосферного воздуха и является крупнейшим резервуаром и предохранительным клапаном атмосферы. Главным

Слайд 8В организмах большая часть азота присутствует в форме соединений, в состав

которых входит аминогруппа NН2-, или в виде аммония. В процессе биохимической фиксации расщепляется молекула N2 и атомы аммиака. Этот процесс протекает с помощью фермента нитрогеназы. Аммиак и ион NH4+, могут поглощаться корнями растений и как уже отмечено, входить в состав аминокислот. Фиксацию азота осуществляют отдельные специализированные бактерии семейства Azotobacteracea и в определенных условиях синезеленые водоросли. Наиболее продуктивны азотофиксирующие клубеньковые бактерии, образующие симбиозы с бобовыми растениями. Массам азота, фиксируемая из воздуха почвенными бактериями до начала хозяйственной деятельности человека, оценивается от 30-40 до 200*106 т/год. В настоящее время к этому добавляется искусственная биологическая фиксация, получаемая при помощи бобовых сельскохозяйственных растений (около 20*109 т/год), а также промышленная фиксация азота из воздуха превысила 60-90*106 т/год.
Цикл – фиксация молекулярного азота – аммонификация мертвого органического вещества – нитрификация – денитрификация имеет наиболее важное значение для глобального массообмена азота, так как этот цикл обеспечивает основной поток азота из его главного резерва – атмосферы.
Часть азота выводится из биологического круговорота и аккумулируется в мертвом органическом веществе. Этот своеобразный запас азота в лесных подстилках, торфе и почвенном гумусе постоянно поддерживается в педосфере и свидетельствует о некоторой заторможенности биологического круговорота.

В организмах большая часть азота присутствует в форме соединений, в состав которых входит аминогруппа NН2-, или в

Слайд 9 Промышленная фиксация атмосферного азота – наиболее сильное вмешательство человечества

в систему природных глобальных циклов массообмена химических элементов в биосфере. Кроме того, значительное количество азота (около 40*106 т/год) в форме оксидов поступает в атмосферу с выбросами промышленных предприятий и транспорта, образующимися при сжигании минерального топлива, а также в гидросферу с бытовыми и промышленными стоками.

Общее время круговорота азота – примерно 100 лет.

Промышленная фиксация атмосферного азота – наиболее сильное вмешательство человечества в систему природных глобальных циклов массообмена

Слайд 10Биогеохимический цикл углерода.
Циклические процессы массообмена углерода имеют особо важное значение для

биосферы. В атмосфере находится 2450*10 9 т углерода. Такое же количество освобождается в процессах дыхания и деструкции. Период обновления углерода в биосфере 60 лет (для биомассы 10 лет). В океане углерод (помимо его содержания в живых организмах) присутствует в двух главных формах: в составе органического вещества и в составе взаимосвязанных ионов НСО-3, СО2-3 и СО2.
С углеродом тесно связан весь процесс возникновения и развития биосферы, т.к. именно углерод является основой белковой жизни на нашей планете, т.е. углерод является важнейшим химическим компонентом живого вещества. Именно этот химический элемент, благодаря своей способности образовывать прочные связи между своими атомами, является основой всех органических соединений.
Из атмосферы углерод усваивается автотрофными организмами-продуцентами (растениями, бактериями, цианобионтами) в процессе фотосинтеза, в результате которого, на основе взаимодействия с водой, формируются органические соединения – углеводы. Далее, в результате процессов метаболизма, с участием веществ, поступающих с водными растворами, в организмах синтезируются и более сложные органические вещества. Они не только используются для формирования растительных тканей, но также служат источником питания для организмов, занимающих очередные звенья трофической пирамиды – консументов. Таким образом, по трофическим цепям, углерод переходит в организмы различных животных.
Биогеохимический цикл углерода.Циклические процессы массообмена углерода имеют особо важное значение для биосферы. В атмосфере находится 2450*10 9

Слайд 11Возвращение углерода в окружающую среду происходит двумя путями.
Во-первых – в

процессе дыхания.
Второй путь возвращения углерода – разложение органического вещества.
Часть атмосферного углерода непосредственно поступает из атмосферы в гидросферу, растворяясь в воде.
В бескислородных средах разложение органического вещества также идёт с формированием в качестве конечного продукта углекислого газа. Здесь окисление протекает за счёт кислорода, заимствуемого из минеральных веществ бактериями-хемосинтетиками. Но процесс в этих условиях идёт медленнее, и разложение органического вещества обычно является неполным. В результате существенная часть углерода остаётся в составе не до конца разложившегося органического вещества и накапливается в толще земной коры в битуминозных илах, торфяниках, углях.


Возвращение углерода в окружающую среду происходит двумя путями. Во-первых – в процессе дыхания. Второй путь возвращения углерода

Слайд 12Хранители углерода – это живая биомасса, гумус, известняки и каустобиолиты. Естественными

источниками углекислого газа, кроме вулканических эксгаляций, являются процессы разложения органичесекого вещества, дыхание животных и растений, окисление органических веществ в почве и других природных средах.
За миллиарды лет с момента появления жизни на Земле весь углерод атмосферы и гидросферы неоднократно прошел через живые организмы. В течение всего 304 лет живые организмы усваивают столько углерода, сколько его содержится в атмосфере. Следовательно, всего за 4 года может полностью обновиться углеродный состав атмосферы, и условно можно считать, что углерод атмосферы за этот срок завершает свой цикл. Цикл углерода, входящего в состав гумуса почв оценивается в 300-400 лет.

Хранители углерода – это живая биомасса, гумус, известняки и каустобиолиты. Естественными источниками углекислого газа, кроме вулканических эксгаляций,

Слайд 13Круговорот воды
Вода составляет значительную часть живых существ: в

теле человека - по весу 60%, а в растительном организме достигает 95%. На круговорот воды на поверхности Земли затрачивается около трети всей поступающей на Землю солнечной энергии. Испарение с водных пространств создает атмосферную влагу. Влага конденсируется в форме облаков, охлаждение облаков вызывает осадки в виде дождя и снега; осадки поглощаются почвой или стекают в моря и океаны.

Круговорот воды   Вода составляет значительную часть живых существ: в теле человека - по весу 60%,

Слайд 14Для человечества важны фазы круговорота в пределах экосистем. Здесь происходят четыре

процесса:
•  перехват. Растительность перехватывает часть выпадающей в осадках воды до того, как она достигает почвы. Перехваченная вода испаряется в атмосферу. Величина перехвата в умеренных широтах может достигать 25% общей суммы осадков, это - физическое испарение;
•  транспирация - биологическое испарение воды растениями.
Это не дождевая вода, а вода, заключенная в растении, т.е. экосистемная. Растения, потребляя около 40% общего количества осадков, играют главную роль в круговороте воды;
•  инфильтрация - просачивание воды в почве. При этом часть инфильтрованной воды задерживается в почве тем сильнее, чем значительнее в ней коллоидальный комплекс, соответствующий накоплению в почве перегноя;
•  сток. В этой фазе круговорота избыток выпавшей с осадками воды стекает в моря и океаны.

Отличие циклов углерода и азота от круговорота воды состоит в том, что в экосистемах два названных элемента накапливаются и связываются, а вода проходит через экосистемы почти без потерь. Биосфера ежегодно использует на формирование биомассы 1% воды, выпавшей в виде осадков.

Для человечества важны фазы круговорота в пределах экосистем. Здесь происходят четыре процесса:•  перехват. Растительность перехватывает часть выпадающей в

Слайд 15Цикл серы.
Основным резервуаром серы является литосфера, так как из атмосферы и

гидросферы она быстро мигрирует. Круговорот серы включает восстановительные и окислительные звенья, а также превращения без изменения валентности:
· восстановительная фаза (переход от сульфатов к сульфидам) реализуется преимущественно биотой с доминирующей ролью прокариот;
· окислительная фаза (переход от сульфидов к сульфатам) протекает как чисто химически, так и с участием микроорганизмов.
Процессы окисления или восстановления не всегда завершаются до конца. В природе нередки не полностью окисленные продукты: элементная сера, сульфиты и др.

Цикл серы.Основным резервуаром серы является литосфера, так как из атмосферы и гидросферы она быстро мигрирует. Круговорот серы

Слайд 16Круговорот второстепенных элементов
Второстепенные элементы подобно жизненно важным мигрируют между организмами и

средой, хотя и не представляют ценности для организмов. Но в окружающую среду часто попадают побочные продукты промышленности, содержащие высокие концентрации тяжелых металлов, радиоактивные элементы и ядовитые органические соединения.
Радиоактивный Sr-90 крайне опасен для человека и животных. По химическим свойствам он похож на кальций и поэтому, попав в организм, накапливается в костях и оказывается в опасном контакте с костным мозгом - кровеносной тканью.
Радиоактивный Cs-137 - по свойствам схож с калием и поэтому быстро циркулирует по пищевым цепям.
Sr-90 и Cs-137 - новые вещества, которые не существовали в природе до того, как человек расщепил атом. Они характеризуются длительными периодами полураспада. Аккумуляция этих радиоактивных изотопов в организме человека создает постоянный источник облучения, приводящего к канцерогенезу.
Элементы, которые человек считает ценными (платина, золото), повторно используются на 90% и более. Однако коэффициент рециркуляции энергии равен нулю.

Круговорот второстепенных элементовВторостепенные элементы подобно жизненно важным мигрируют между организмами и средой, хотя и не представляют ценности

Слайд 17Круговорот фосфора-основа целостности биосферы

Круговорот фосфора-основа целостности биосферы

Слайд 18Общая характеристика фосфора. Содержание фосфора в земной коре
Фосфор один из достаточно

широко распространенных химических элементов, входящих в состав различных, в том числе и породообразующих минералов, формирующих ряд горных пород. В процессе выветривания этих пород в значительных количествах фосфор поступает в биогеоценозы, а также за счет выщелачивания атмосферными осадками и в конечном счете накапливается в гидросфере. Во всех случаях фосфор оказывается в пищевых системах, но его подготовка не является простой. Фосфор же необходим организмам для построения генов и молекул соединений, переносящих энергию внутри клеток.
В минералах фосфор содержится в форме неорганического фосфата-иона (РО3 4 ). Растения способны к поглощению фосфата из водного раствора для включения их в состав различных органических соединений. В растениях фосфор выступает уже в форме так называемого органического фосфата. В этой форме он уже способен к движению по пищевым цепям и к его передаче организмам экосистем. При каждом переходе от одного трофического уровня к другому достаточное количество фосфорсодержащего соединения для получения организмом энергии подвергается окислению при клеточном дыхании. В этом случае фосфор может оказаться только в составе мочи или ее аналогов и быть выведенным за пределы организма в окружающую среду, где собственно может начать дальнейший цикл через поглощение растениями.
Источником фосфора биосферы является главным образом апатит, встречающийся во всех магматических породах.

Общая характеристика фосфора. Содержание фосфора в земной кореФосфор один из достаточно широко распространенных химических элементов, входящих в

Слайд 19В превращениях фосфора большую роль играет живое вещество. Организмы извлекают фосфор

из почв, водных растворов. Усвоение фосфора растениями во многом зависит от кислотности почвы. Фосфор жизненно необходим животным в процессах обмена веществ для накопления энергии. С гибелью организмов фосфор возвращается в почву и в илы морей. Он концентрируется в виде морских фосфатных конкреций, отложений костей рыб, что создает условия для создания богатых фосфором пород, которые в свою очередь являются источником фосфора в биогенном цикле.
Фосфор является необходимым компонентом нуклеиновых кислот (РНК и ДНК), выполняющих в биосистемах функции, связанные с записью, хранением и чтением информации о строении организма.
Содержание фосфора в земной коре составляет 8*10-20 % (по весу). В свободном состоянии фосфор в природе не встречается вследствие его легкой окисляемости.
Так как растения уносят из почвы значительное количество фосфора, а естественное пополнение фосфорными соединениями почвы крайне незначительно, то внесение в почву фосфорных удобрений является одним из важнейших мероприятий по повышению урожайности. Ежегодно в мире добывают приблизительно 125 млн. т. фосфатной руды. Большая ее часть расходуется на производство фосфатных удобрений.

В превращениях фосфора большую роль играет живое вещество. Организмы извлекают фосфор из почв, водных растворов. Усвоение фосфора

Слайд 20Для большинства химических элементов и соединений, которые обычно связаны с литосферой,

а не с атмосферой, характерны осадочные циклы. Циркуляция таких элементов осуществляется путем эрозии почв, осадкообразования, горообразования, вулканической деятельности и переноса веществ организмами. Твердые вещества, переносимые по воздуху как пыль, выпадают на землю в виде сухих осадков или с дождем. Осадочные циклы имеют общую направленность «вниз».
Живым сообществам доступны в основном те химические элементы, которые входят в состав пород, расположенных на поверхности Земли. Важным для биосферы элементом, недостаток которого на поверхности ограничивает рост растений, является фосфор.
Человек так изменяет движение многих веществ, участвующих в осадочных циклах, что круговороты их теряют цикличность. В результате в одних местах возникает недостаток, а в других - избыток некоторых веществ. Механизмы, обеспечивающие возвращение химических элементов в круговорот, основаны главным образом на биологических процессах минерализации органических веществ.

Для большинства химических элементов и соединений, которые обычно связаны с литосферой, а не с атмосферой, характерны осадочные

Слайд 21Из осадочных циклов наибольшее значение в биосфере имеет круговорот фосфора
Круговорот фосфора

в природе сильно отличается от биогеохимических циклов углерода, кислорода, азота и серы, так как газовая форма соединений фосфора (например РН3) практически не участвует в биогеохимическом цикле фосфора. То есть фосфор к накоплению в атмосфере вообще не способен. Поэтому роль «резервуара» фосфора, из которого этот элемент извлекается и используется в биологическом круговороте играет литосфера.
Фосфор в литосфере содержится в форме фосфатных соединений (солей фосфорной кислоты). Основная доля среди них приходится на фосфат кальция – апатит. Это полигенный минерал, образующийся в различных природных процессах – как в глубинных, так и в гипергенных (в том числе и биогенных). Фосфатные соединения способны растворяться в воде, и фосфор в составе иона РО43- может мигрировать в водных растворах. Из них фосфор и усваивается растениями.

Из осадочных циклов наибольшее значение в биосфере имеет круговорот фосфораКруговорот фосфора в природе сильно отличается от биогеохимических

Слайд 22Для растений наиболее доступным является фосфор неспецифических органических соединений и гумуса

и именно он играет главную роль в малом (локальном) биологическом цикле фосфора.
Животные являются еще большими концентраторами фосфора, чем растения. Многие из них накапливают фосфор в составе тканей мозга, скелета, панцирей.. Есть несколько способов усвоения фосфора организмами-консументами. Во-первых, прямое усвоение из растений в процессе питания. Во-вторых, водные организмы-фильтраторы извлекают фосфор из органических взвесей. В-третьих, органические соединения фосфора усваиваются организмами-илоедами при переработке ими биогенных илов.
Возврат фосфора в окружающую среду происходит при разложении органического вещества. Но возврат этот оказывается далеко не полным. В восстановительной среде образуются соединения фосфора с двухвалентным железом, что тоже способствует выносу фосфора из почвы.
Миграция фосфора возможна и за счет водной и ветровой эрозии. Поэтому биогеохимический цикл фосфора значительно менее замкнут и менее обратим, чем циклы углерода и азота, а загрязнение фосфором окружающей среды особенно опасно .

Для растений наиболее доступным является фосфор неспецифических органических соединений и гумуса и именно он играет главную роль

Слайд 23Основными особенностями круговорота фосфора являются:
отсутствие атмосферного переноса;
наличие единственного источника – литосферы;
тенденция

к накоплению в конечных водоёмах стока.

При интенсивной с/х эксплуатации земель потери фосфора в ландшафте становятся практически необратимыми. Компенсация возможна только за счёт применения фосфорных удобрений. Известно, что фосфорные удобрения являются важным и необходимым звеном в получении высоких урожаев сельскохозяйственных культур. Однако, все известные запасы месторождений фосфатов ограничены и по предсказаниям ученых могут истощиться уже в ближайшие 75-100 лет. В то же время, вредные соединения фосфатов в последнее время становятся одним из важнейших факторов загрязнения речных и озерных вод.


Основными особенностями круговорота фосфора являются:отсутствие атмосферного переноса;наличие единственного источника – литосферы;тенденция к накоплению в конечных водоёмах стока.

Слайд 24
Таким образом, в последе время общая картина распределения

им миграции фосфора в биосфере резко нарушена человеком. Вот слагаемые этого явления:
1. мобилизация фосфора из агроруд и шлаков, производство и применение фосфорных удобрений;
2. производство фосфорсодержащих препаратов и их использование в быту;
3. производство фосфорсодержащих ресурсов продовольствия и кормов, вывоз и потребление их в зонах концентрации населения;
4. развитие рыбного промысла, добыча морских моллюсков и водорослей, что влечет за собой перераспределение фосфора из океана на сушу.
В итоге наблюдается процесс фосфатизации суши, но процесс этот проявляется крайне неравномерно. Увеличивается содержание фосфора в окружающей среде больших городов. Напротив, страны, активно экспортирующие органические продукты и не применяющие фосфорных удобрений, теряют запасы фосфора в своих почвах.

Таким образом, в последе время общая картина распределения им миграции фосфора в биосфере резко

Слайд 25Считают, что фосфор - основной фактор, лимитирующий рост первичной продукции биосферы.

Полагают даже, что фосфор - главный регулятор всех других биогеохимических циклов, это - наиболее слабое звено в жизненной цепи, которая обеспечивает существование человека.
Поскольку на Земле запасы фосфора - элемента, важного для функционирования экосистем, малы, то любые воздействия человека на биогеохимический круговорот фосфора имеет ряд отрицательных последствий.
Круговорот фосфора в биосфере – одно из самых значимых явлений живой природы. Он необходим как растениям, так и животным, и человечеству.

Считают, что фосфор - основной фактор, лимитирующий рост первичной продукции биосферы. Полагают даже, что фосфор - главный

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть