1. Understand the concept of absolute value of a number.
2. Use the properties of the value of a number to solve equations.
Absolute value
Absolute value
B
C
D
A
B
C
D
A
Both 3 and −3 are a distance of 3 units from 0. |3| = |−3| = 3.
Distance, in mathematics, is never negative.
Absolute Value-What is it?
For example "6" is 6 away from zero, but "−6" is also 6 away from zero.
So the absolute value of 6 is 6, and the absolute value of −6 is also 6
|x| ≥ 0
|x| = |-x|
|x ∙ y|= |x| ∙ |y|
|x / y|= |x| / |y| y ≠ 0
|x + y| ≤ |x| + |y|
|x - y| =| y - x |
Properties of Absolute value
Therefore, −3 < a < 3. This is the solution.
The inequality will be true if a has any value between −3 and 3.
In general, if an inequality looks like this --
|a| < b.
-- then the solution will look like this:
−b < a < b for any argument a.
|x| ≥ 0
|x| = |-x|
|x ∙ y|= |x| ∙ |y|
|x / y|= |x| / |y| y ≠ 0
|x + y| ≤ |x| + |y|
|x - y| =| y - x |
Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.
Email: Нажмите что бы посмотреть