Презентация, доклад по математике на английском языке на тему Absolute value (7 класс)

Содержание

Work in groups

Слайд 1Theme of the lesson:
After studying this lesson pupils will be able

to:
1. Understand the concept of absolute value of a number.
2. Use the properties of the value of a number to solve equations.

Absolute value

Theme of the lesson:After studying this lesson pupils will be able to:1. Understand the concept of absolute

Слайд 2Work in groups

Work in groups

Слайд 3Paper of estimation

Paper of estimation

Слайд 4Review

Review

Слайд 6Question 1
Numbers (Year 6, Easy)


Charles has $5 in his pocket, but

Brad owes $2 and Alec owes $6.
Which one of the following correctly shows this information on the number line?

B

C

D


A

Question 1Numbers (Year 6, Easy)Charles has $5 in his pocket, but Brad owes $2 and Alec owes

Слайд 7The temperature in Anchorage was 9° C below zero.
The temperature

in Chicago was 1° C below zero and the temperature
in Baltimore was 3° C above zero. Which one of the following correctly
shows this information on the number line?

B

C

D


A

The temperature in Anchorage was 9° C below zero. The temperature in Chicago was 1° C below

Слайд 8Which of the following most accurately/точно/shows the position
of 2¼ on

the number line?
Which of the following most accurately/точно/shows the position of 2¼ on the number line?

Слайд 10Basket of ideas
Put your ideas about Absolute value

What do you think

about it?
Basket of ideasPut your ideas about Absolute valueWhat do you think about it?

Слайд 11Приём «Корзина идей»
идеи
понятия
предположения
решения
имена
На доске рисунок корзины.
В нее будем условно собирать

все, что знаем по теме.
Приём «Корзина идей»идеипонятияпредположениярешенияименаНа доске рисунок корзины. В нее будем условно собирать все, что знаем по теме.

Слайд 12New vocabulary
Absolute value
Real number
Regardless
Negative
Positive
Sign
Vertical bars
Units
To solve
Expressions
Product
-Абсолютная величина
-Действительные числа
-Независимо
-Отрицательный
-Положительный
-Знак
-Вертикальные скобки
-Единицы
-Решать
-Выражения
-Произведение


New vocabularyAbsolute valueReal numberRegardlessNegativePositive SignVertical barsUnitsTo solveExpressionsProduct -Абсолютная величина-Действительные числа-Независимо-Отрицательный-Положительный-Знак-Вертикальные скобки-Единицы-Решать-Выражения-Произведение

Слайд 13Draw the association of Absolute value
Absolute value

Draw the association  of Absolute value Absolute value

Слайд 14This symbol |x| denotes/обозначает/ the absolute
value of x, which is the number without its

sign.  
|+3| = 3.   |−3| = 3.
Here is the purely algebraic definition of |x|:
If x ≥ 0, then |x| = x; if x < 0, then |x| = −x.
Geometrically, |x| is the distance of x from 0.

Both 3 and −3 are a distance of 3 units from 0.  |3| = |−3| = 3.  
Distance, in mathematics, is never negative.

Absolute Value-What is it?

This symbol |x| denotes/обозначает/ the absolute value of x, which is the number without its sign.  |+3| = 3.   |−3| =

Слайд 15Footnote/примечание/:
Absolute Value means to think only about how far a number is from

zero.

For example "6" is 6 away from zero, but "−6" is also 6 away from zero.
So the absolute value of 6 is 6, and the absolute value of −6 is also 6

Footnote/примечание/: Absolute Value means to think only about how far a number is from zero.For example

Слайд 16The absolute value of real number is always positive or zero.
The

absolute value of a real number and the absolute value of its negative are equal.
The absolute value of the product of two real numbers is equal to the product of their absolute values.
The absolute value of the quotient of two real numbers is equal to the quotient of their absolute values.
The absolute value of the sum of two real numbers is less than or equal to the sum of their absolute values.(This property is called triangle inequality)
The absolute values of the differences of two real numbers are equal.

|x| ≥ 0

|x| = |-x|

|x ∙ y|= |x| ∙ |y|

|x / y|= |x| / |y| y ≠ 0

|x + y| ≤ |x| + |y|


|x - y| =| y - x |

Properties of Absolute value

The absolute value of real number is always positive or zero.The absolute value of a real number

Слайд 17Absolute value inequalities
There are two forms of absolute value inequalities.  
One

with less than, |a|< b, and the other with greater than, |a|> b.  
They are solved differently.  Here is the first case.

Example 2.  Absolute value less than. |a| < 3.
For that inequaltiy to be true, what values could a have?
Geometrically,  a is less than 3 units from 0.

Therefore, −3 < a < 3. This is the solution.  
The inequality will be true if a has any value between −3 and 3.
In general, if an inequality looks like this --
|a| < b.
-- then the solution will look like this:
−b < a < b for any argument a.

Absolute value inequalitiesThere are two forms of absolute value inequalities.  One with less than, |a| b.  They are solved

Слайд 18Examples
Solve for x:|x − 2| = 8.

Solution:   x − 2  is the argument.  Either

that argument will be 8, or it will be −8.
x − 2 = 8,  or  x − 2 = −8.
We must solve these two equations/уравнения/.  
The first implies/подразумевается/
x = 8 + 2 = 10.
The second implies
x = −8 + 2 = −6.
These are the two solutions:  x = 10 or −6.
Examples Solve for x:|x − 2| = 8.Solution:   x − 2  is the argument.  Either that argument will be 8, or

Слайд 19For which values of x will this inequality/неравенство/ be true?
|2x − 1| < 5.
Solution: The

argument, 2x − 1, will fall between −5 and 5:
−5 < 2x − 1 < 5.
We must isolate/выделять/ x.  First, add 1 to each term of the inequality:
−5 + 1 <  2x  < 5 + 1
−4 <  2x  < 6.
Now divide each term by 2:
−2 < x < 3.
The inequality will be true for any value of x in that interval.
For which values of x will this inequality/неравенство/ be true?|2x − 1| < 5.Solution: The argument, 2x − 1, will fall between

Слайд 20
Exercises for relax

Exercises for relax

Слайд 21Звездочёт
Электронная физминутка для глаз

Звездочёт Электронная физминутка для глаз

Слайд 22Вам пришло письмо

Вам пришло письмо

Слайд 23
Выполни гимнастику для глаз по схеме:

Выполни гимнастику для глаз по схеме:

Слайд 30БЕРЕГИТЕ ЗРЕНИЕ!

БЕРЕГИТЕ ЗРЕНИЕ!

Слайд 31Work on compliance
The absolute value of real number is always positive

or zero.
The absolute value of a real number and the absolute value of its negative are equal.
The absolute value of the product of two real numbers is equal to the product of their absolute values.
The absolute value of the quotient of two real numbers is equal to the quotient of their absolute values.
The absolute value of the sum of two real numbers is less than or equal to the sum of their absolute values.(This property is called triangle inequality)
The absolute values of the differences of two real numbers are equal.

|x| ≥ 0

|x| = |-x|

|x ∙ y|= |x| ∙ |y|

|x / y|= |x| / |y| y ≠ 0

|x + y| ≤ |x| + |y|


|x - y| =| y - x |

Work on complianceThe absolute value of real number is always positive or zero.The absolute value of a

Слайд 32Reflexy:

Reflexy:

Слайд 33hometask:
ex 6.7.8.9 pg 264

hometask:ex 6.7.8.9 pg 264

Слайд 34Thank you for the lesson!

Thank you  for the lesson!

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть